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W e have studied the Thouless energy in Josephson

superconductor – normal metal – superconductor

(SN-N-NS) bridges analytically and numerically, considering

the influence of the sub-electrode regions. We have discov-

ered a significant suppression of the Thouless energy with

increasing interfacial resistance, consistent with experimen-

tal results. The analysis of the temperature dependence of

the critical current in Josephson junctions in comparison with

the expressions for the Thouless energy may allow the deter-

mination of the interface parameters of S and N-layers.

Introduction

In recent years, there has been a reawakened interest in
Josephson structures in which the weak coupling region
exhibits a metallic type of conductivity.1–11 These struc-
tures are anticipated to surpass the integration limita-
tions faced by superconducting devices used in digital
information processing. The steady-state properties of
SNS Josephson sandwiches and superconductor/normal
metal/superconductor SN-N-NS bridges have been inten-
sively studied.10–19

In Ref.12 assuming the fulfillment of rigid boundary
conditions at the SN interfaces, it was shown that in the
case when the distance L between the S-electrodes signif-
icantly exceeds the characteristic decay length of super-
conducting correlations in the N-layer ξ = (D/2πT )1/2,
the decay of the critical current Ic with increasing L de-
pends significantly on the ratio between the operating
temperature T and the critical temperature of the su-
perconducting electrodes Tc (here D is the diffusion co-
efficient of an ordinary metal). At small temperature
(T ≪ Tc) there is a power dependence (Ic ∝ 1/L2).
With increasing temperature, the dependence of Ic on
L becomes exponential: Ic ∝ exp (−L/ξ).

In Ref.17 these studies were complemented by a more
detailed analysis of the temperature dependence of the
critical current at low temperatures T ≪ Tc. Numerical
calculations carried out in Ref.17 allowed the authors to
propose an approximation formula for Ic

eIcRn

ET
= α

(
1− β exp

(
−αET

3.2T

))
, ET =

D

L2
. (1)

The fitting parameters α ≈ 10.82 and β ≈ 1/3 correspond
to the limit of small Thouless energy ET as compared to

the magnitude of the order parameter ∆ in S-electrodes.
In the opposite limit (ET ≫ T ) the dependence Ic(ET )
has the following form
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2πT

ET

)
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The publication of these results17 stimulated the study
of SNS-based structures aiming to experimentally deter-
mine the Thouless energy.17,18,20–42 Experimental stud-
ies have shown that the values of the parameter α in
the expression (1) obtained in Ref.17 are at least several
times larger than their experimental values. As a possible
reason for this discrepancy, the presence of finite trans-
parency of the SN boundaries of the studied Josephson
contacts has been hypothesized. To account for this cir-
cumstance, a renormalization of the Thouless energy was
proposed18

Eeff
T = ET

ArB

C + r
, where r =

GN

GB
. (3)

Here, r is normalization coefficient, GN and GB are the
conductance of the normal wire and the SN interface,
respectively, A, B, and C are fitting parameters. It is im-
portant to note that the authors of Ref.18 ”do not have a
good explanation of the factor rB and the numerical value
of B” that they used to fit the data. Additionally, the
fitting coefficients A, B, and C are not universal. Even
for a set of samples differing by the distance L between
the electrodes with fixed other parameters, all these co-
efficients will be sample-dependent.

It should be noted that almost all the experimental
works cited above used the shadow mask technique to fab-
ricate SNS-based Josephson contacts. The resulting hy-
brid structures had the SN-N-NS bridge geometry shown
in figure 1. In this type of contact, the effective distance
Leff between the S-electrodes is not the geometric size
L of the weak bonding region. This region is delocal-
ized (in the other words, without rigid boundaries) and
includes the areas of the N-film under the superconduc-
tors where current injection into the superconductor takes
place. The presence of such delocalization was also quali-
tatively indicated by the experimental data. Indeed, sub-
stitution of the experimentally determined ET into the
expression (1) gave an estimate of the size of the weak
coupling region, which is larger than L. In our opinion,
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there is a significant difference in the geometry of the SN
and SN-NS interfaces that leads to an overestimation of
the theoretical value of the Thouless energy calculated
using rigid boundary conditions at the interface of the
composite SN electrode with the N-film of the bridge.
The purpose of this article is to perform a detailed anal-
ysis of the proximity effect between the SN electrode and
the N-film of SN-N-NS bridge structures and to derive
an expression for the Thouless energy that takes into ac-
count both the finite transparency of their SN boundaries
and the delocalization of the weak link region.

Before that, it is first necessary to define what we
mean by the Thouless energy in Eq. (1) in the considered
SN-N-NS structures. According to the definition43–46 ET

characterizes the sensitivity of the energy state of the
system to a modification of boundary conditions. This
correlates with the existing characteristic scale of spatial
changes in the system’s parameters with its geometric
dimensions. Unfortunately, for SN-N-NS junctions the
geometric size of the weak link region cannot be strictly
determined. Moreover, a supercurrent across the junction
is expressed by the sum of the terms combined by the
Green’s function over the Matsubara frequencies, there-
fore the characteristic scale of spatial variations in the
N-film ξω = (D/2ω)1/2 depends on the Matsubara fre-
quencies ω = πT (2n + 1), where n = 0, 1, 2 . . . In the
low-temperature range T ≪ Tc this sum converges at
ω ≈ πTc. Thus, there is wide range of parameters (L
and ξω) with some uncertainty in the choice of a single
characteristic scale for spatial changes in the structure.

There is another interpretation of the Thouless energy.
It suggests that two states whose energies differ by less
than the Thouless energy are correlated. Otherwise, they
can be considered as independent single-particle states
whose energies are not shared. In our particular case, we
are not dealing with the energy of states, but with a set of
Green’s functions which determine the supercurrent. The
difference in the nature of the spatial changes in these
functions is determined by the Matsubara frequency ω =
πT (2n+1). Therefore, the interval at which the changes
occur is equal to 2πT .

In order to determine from a numerical solution of the
Usadel equations or from experimental data the temper-
ature TTh for the transition from a sharp increase to a
smooth character of the current change with decreasing
temperature, we can introduce the Thouless energy for
our problem as ET = 2πTTh. The Thouless energy de-
termined in this way gives us the temperature at which
the structural transitions from a discrete to an integral
representation of its properties, such as the order parame-
ter and the superconducting current (supercurrent), takes
place.

It should be emphasized that the definition of ET =
2πTTh is absolutely equivalent to the standard definition
of ETh in Eq. (1). By introducing the Thouless energy
as described above, we can further use the relation (1) to
estimate the characteristic scale of spatial variations in
SNS structure as L = (D/2πTTh)

1/2 = ξ and thus find
that L coincides with ξω at the first Matsubara frequency
ω = πT and T = TTh = ET /2π, that is, with the maxi-

mum value among the scales ξω. In other words, the re-
sult of the above reasoning can be reformulated as follows:
the Thouless energy is indeed defined by the expression
(1). The value of the Thouless temperature TTh = ET /2π
required for processing of experimental data follows from
the equality of the geometrical size of the structure with
the maximum value of ξω among the set of characteristic
scales of the problem.

Thus, according to the established rule for the Thou-
less energy ET in the considered planar SN-N-NS struc-
tures, we have to proceed from the equality of the scale
ξω to the effective geometric size of the weak coupling
region L+ ζω

ξω = L+ 2κζω (4)

at the first Matsubara frequency ω = ET /2. Here, ζω is
the maximum value among characteristic scales of spa-
tial changes in the N-layer underneath the S-films and κ
is a parameter that fixes the part of the effective coher-
ence length ζω by which the effective distance between the
electrodes increases (formal definition of κ is given below).
Note that at ζω = 0 the expression (4) is transformed into
the definition (1) of ET , which was previously used to de-
scribe SNS sandwiches with rigid boundary conditions at
the SN interfaces.

To determine ζω it is sufficient to solve the problem
on the proximity effect between a semi-infinite N-film and
an extended SN electrode.

1 Proximity effect between extended SN
electrode and semi-infinite N-film

We assume that the dirty-limit conditions are satisfied
both in the superconductor and normal metal in the bridge,
its SN boundaries have finite transparency, and the thick-
ness of the N-film dN is much less than ξN = (D/2πTc)

1/2.
The suppression of superconductivity in the S-film due to
the proximity effect with the N-layer is considered neg-
ligible and it is not taken into account. Under these as-
sumptions the proximity effect between the semi-infinite
SN electrode (at x ≥ 0) and the semi-infinite N-film (at
x ≤ 0) can be considered in the framework of the Usadel
equations.47 It was shown48 that the Usadel equation for
the θ function in the N-film under the S-electrode they
can be written in the form

ζ2ω
∂2

∂x2
θ − sin(θ − θ(∞)) = 0, x ≥ 0, (5)

where

θ(∞) = arctan
πTc sin(θS)

ωγBM + πTc cos(θS)
(6)

and

cos(θS) =
ω√

ω2 +∆2
, sin(θS) =

∆√
ω2 +∆2

, (7)

γBM = γBd/ξN , γB = RB/ρNξN , RB is the specific
boundary resistance, ∆ is the absolute value of the order
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Figure 1. a – Scanning electron microscope image of an Nb/Au-Au-Au/Nb bridge with superconducting Nb electrodes and an Au
weak link. b – Top part: three-dimensional sketch of the Josephson superconductor/normal metal/superconductor (SN-N-NS) bridge.
The sample is connected using a four-point scheme. Bottom part: side view of the Josephson SN-N-NS bridge. Wavy lines indicate the
proximized region of the N-layer under the S-electrode, and the red frame indicates the effective weak link.

parameter in the S layer, which has the BCS-like temper-
ature dependence. We conclude that

ζω
ξω

=

√√√√ ωγBM√
(ωγBM )

2
+ 2πTcωγBM cos(θS) + (πTc)

2
. (8)

The Usadel equation in the N-film can be written as
follows

ξ2ω
∂2

∂x2
θ − sin θ = 0, x ≤ 0. (9)

The existence of the first integrals of the equations (5)
and (9)

ζω
∂

∂x
θ = 2 sin

(
θ(∞)− θ

2

)
, x ≥ 0, (10)

ξω
∂

∂x
θ = 2 sin

θ

2
, x ≤ 0, (11)

permits to get their analytical solutions

θ = θ(∞) + 4 arctan

[
Q exp

(
− x

ζω

)]
, x ≥ 0, (12)

θ = 4arctan

[(
tan

θ(−0)

4

)
exp

(
x

ξω

)]
, x ≤ 0, (13)

where

Q = tan
θ(+0)− θ(∞)

4
.

The integration constants θ(±0) in Eqs. (12)–(13)

θ(±0) = 2 arctan
sin θ(∞)

2

cos θ(∞)
2 + g

, g =
ξω
ζω

. (14)

have been determined from the boundary conditions

∂

∂x
θ(+0) =

∂

∂x
θ(−0) and θ(+0) = θ(−0) (15)

at SN-N interface (x = 0).

2 Thouless energy

Substitution of Eq. (8) into Eq. (4) at the first Matsubara
frequency ω = ET /2 results in

L

ξN
+ 2κ

√
γBM√

ϵ2 (γ2
BM + 2γ∗γBM ) + 1

=

√
1

ϵ
, (16)

where ϵ = ET /2πTc, γ
∗ ≈ 1.781 is Euler’s constant. For

simplicity we replace ∆ with its value πTc/γ
∗ at T ≪ Tc.

In the limit ϵγBM ≫ 1 Eq. (16) transforms to

ϵ =
ξ2N
L2

1− 2κ

√
γBM√

γ2
BM + 2γ∗γBM

2

. (17)

Note that as γBM → ∞ the SN boundaries become com-
pletely non-transparent for quasiparticles in the N-region,
therefore thequasiparticle current cannot flow from the
N-film of the SNS contact into the S-electrodes. If the
length of the SN boundaries of the composite SN elec-
trodes of the SN-N-NS structure significantly exceeds ζω,
the length of the current localization region in its N-part
can be considered infinite. Therefore, in full agreement
with Eq. (1), the parameter ϵ should tends to zero, as
γBM → ∞. From this requirement we get κ = 1/2 and

ϵ =
ξ2N
L2

1−
√

γBM√
γ2
BM + 2γ∗γBM

2

. (18)

Suppose further that the parameter κ is independent on
γBM in the opposite limit ϵγBM ≪ 1, then we get

ϵ =
ξ2N

(L+ ξN
√
γBM )2

. (19)

Figures 2a,b show the dependence of the Thouless en-
ergy ET on the suppression parameter γBM , calculated
using equations (16), (17), and (19), for the distances
between the electrodes SN-N-NS structures, which are
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Figure 2. a, b – Thouless energy ET versus interface parameter γBM in the SN-N-NS bridge with the distances between the electrodes
L = 5ξN (panel a) and L = 10ξN (panel b), calculated from the Eq. (16) (solid line) and from the asymptotic expressions (18) (dash-dotted
line) and (19) (dashed line), valid in the limit of ϵγBM ≫ 1 and ϵγBM ≪ 1, respectively.

L = 5ξN and L = 10ξN . The calculations show that
the approximation formula (19) coincides with the ex-
act dependence ET (γBM ) calculated by the formula (16)
within the specified range of parameters for long bridges.
A noticeable discrepancy between the curves calculated
by formulas (16) and (19) only appears in the γBM ≫ 100
limit – this scenario is not realized in the experiments in-
volving SN-N-NS structures.

At the same time, the expression (17) fits the exact
dependency ET (γBM ) rather poorly. The reason is that
the condition ϵγBM ≫ 1 is not fulfilled even in the region
of large γBM . This is due to the fact that ϵ decreases
much faster than γ−1

BM . The difference between the exact
solution (16) and that resulting from asymptotic expres-
sion (17) becomes more obvious as L/ξN increases.

It is easy to see that when L ≫ ξN
√
γBM the ex-

pression (16) is reduced to Eq. (1). Physically, this limit
is equivalent to the fulfillment of rigid boundary condi-
tions at the N boundaries of the bridging film with its
NS electrodes. In this limit, as in the SNS sandwiches
investigated in Ref.17 the rigid boundary conditions do
not impose any additional characteristic lengths charac-
terizing the spatial variations of parameters in the N film
of SNS or SN-N-NS structures. The weak coupling region
turns out to be a “closed” system, characterized only by
its intrinsic parameters, such as the diffusion coefficient
D. The Thouless energy (1) was introduced precisely for
such “closed” systems.

Going beyond the rigid boundary conditions, such as
considering the finite transparency of SN boundaries in
SNS sandwiches or the delocalization of the weak cou-
pling region in the studied SN-N-NS structures, violates
the closure condition. Additional scales appear in the
problems determined by the suppression parameter γB in
SNS sandwiches or γBM in SN-N-NS structures. There-
fore, in SN-N-NS bridges in accordance with the for-
mula (16) at L ≪ ξN

√
γBM the diffusion coefficient no

longer characterizes the system and the Thouless energy
ET = πTc/γBM in the first approximation is determined
only by the parameter γBM , i.e., by the properties of the
SN boundaries.

The proposed implicit definition (16) of ET is a com-
promise solution, considering both the internal parame-
ters of the N-metal in the weak coupling region and the
peculiarities of induced superconducting correlations in
in the N-metal.

3 Calculation of a supercurrent across
SN-N-NS junction

The dependence of the superconducting current density
I on the phase difference of the order parameters of the
superconducting electrodes φ in the SN-N-NS junctions
has been previously calculated by numerically in Ref.10

for arbitrary values of γBM and L/ξN . Just as in the
approach we used earlier in Section II, the suppression
of superconductivity in the S-film was not taken into ac-
count in Ref.9 For computational convenience, the Usadel
equations were written in the Φ representation (the origin
of the 0x axis is placed in the center of the structure)

ξ2eff
∂

∂x

(
G2 ∂Φ

∂x

)
− Φ = −δ, x ≥ L/2; (20)

∂

∂x

(
G2 ∂Φ

∂x

)
− ΩGΦ = 0, 0 ≤ x ≤ L/2; (21)

ξ2eff =
γBM

G (Gs + γBMΩ)
, δ =

Gs∆exp(iφ/2)

(Gs + γBMΩ)
; (22)

I

I0
=

2πT

Tc

∞∑
Ω≥0

G2

Ω2

(
ImΦ

∂ ReΦ

∂x
− ReΦ

∂ ImΦ

∂x

)
. (23)

Here, Φ and G = Ω/(Ω2 + ΦΦ∗)1/2 are Usadel Green’s
functions, the Matsubara frequencies Ω = (2n + 1)T/Tc

are normalized on πTc, the x-coordinate is normalized on
ξN , and I0 = Tc/eξnρN , where ρN is residual resistivity
of the N-film. The modulus of the order parameter in the
S-electrode ∆ has the BCS-like temperature dependence
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and it is normalized on πTc; φ/2 is the phase of the order
parameter for the right electrode (x ≳ L/2).

Equations (20) and (21) should be supplemented by
appropriate boundary conditions. At x = 0 these condi-
tions follow from the symmetry of the considered problem

∂ ReΦ

∂x
= 0 and ImΦ = 0. (24)

At a large distance from the N-NS boundary, the function
Φ converges to a solution that is independent of x

Φ = δ. (25)

Figures 3a,b show the Ic(T ) dependences calculated
for L = 5ξN and for various interface parameters γBM

ranging from 0.01 to 100. For convenience, they are pre-
sented in linear and logarithmic scales. The points on
these curves (◦) correspond to the halfed Thouless en-
ergy (T/Tc = ET /2). The ET values are calculated for
L = 5ξN and various γBM using Eq. (19). These fig-
ures clearly show that in the vicinity of ET /2 the slope of
the dependences Ic(T ) changes, i.e., there is a transition
from a smooth to a sharp temperature drop of Ic(T ) with
increasing temperature (see figures 3a,b).

In addition to the temperature T = ET /2, two other
characteristic temperature values can be noted. They
are T = TTh = ET /2π marked with squares and T = ET

marked with triangles on the temperature dependences
of the first derivative of the critical current with respect
to temperature (see figures 3c-f). Figures 3d,f clearly
show that for L = 5ξN and γBM = 0.01 the Thouless
temperature is TTh ≈ 0.04Tc. The increase of the pa-
rameter γBM is accompanied by a shift of the values of
this temperature towards T = 0, so that at γBM = 2,
the value of TTh turns out to be equal to ≈ 0.025Tc. At
T = TTh and below the critical current reaches satura-
tion. So the first derivative dIc/dT is zero at T ≲ TTh.
From the presented in figures 3d,f dependences it also
follows that there are two extra points to be mentioned.
At T ≈ ET and γBM < 5 the local minimum of the
derivative is reached. At T ≈ ET /2 an inflection point
of dIc/dT appears for γBM < 5. Qualitatively, this point
corresponds to the transition area between the saturation
region and decreasing part of Ic(T ) dependence. These
reference points at T = ET /2 and T = ET can be use-
ful when values of T = TTh are difficult to achieve due
to limitations on the temperature range allowed for mea-
surements. In the limit γBM ≫ 5 the effective impact of
boundaries increases and the positions of the considered
points T ≈ ET /2 and T ≈ ET are shifted.

Note that in the limit of a small critical current the
boundary value problem (20)-(25) may also have an ana-
lytical solution. This limit is realized in the case when it is
possible to neglect the suppression of anomalous Green’s
functions induced in the N-film by the current flowing
through it.

4 Critical current of the long SN-N-NS bridge

In the L ≫ ξ limit, the superconducting state near the
center of the bridge can be described by the superposi-

tion of anomalous Green’s functions (13)–(14) penetrat-
ing from the superconducting banks into the bridge (see
Refs.16,49,50)

Φ

ω
= tan

[
θ

(
−x− L

2

)]
e−iφ

2 +

tan

[
θ

(
x− L

2

)]
ei

φ
2 , (26)

where θ(x) is the solutions of the proximity problem (12)–
(14). By substituting this solution of the Usadel equa-
tions into the expression for the supercurrent [see Eq. (23)],
we arrived at a sinusoidal dependence of the supercurrent
on the phase difference φ with a critical current density
equals to

Ic
I0

=
128πT

Tc

∑
ω

tan2

(
1

2
arctan

sin θ(∞)
2

cos θ(∞)
2 + g

)
e−

L
ξω .

(27)

In the considered approximation (L ≫ ξ) the critical
current value is determined by the first term in the sum
in Eq. (27):

Ic
I0

=
128πT

Tc
tan2

(
1

2
arctan

sin θ(∞)
2

cos θ(∞)
2 + g

)
e−

L
ξ , (28)

where θ(∞) is determined by Eq. (6) with n = 0, that
is ω = πT . The expression (28) is an analog of the for-
mula (2) derived in Ref.16 for SNS structures with rigid
boundary conditions at the SN boundaries. Unlike from
Eq. (2), the expression (28) takes into account both the
finite transparency of the SN boundaries and the delocal-
ization of the weak-link region.

Note that the expression (27) is also valid in the limit
of large γBM ≫ 1, if the distance L between the SN
electrode is not too small, so that the sum in Eq. (27)
converges at

ω ≲
πTc

γBM
max

[
1,

L

ξN

]
. (29)

5 Comparison with experimental data

Theoretical results given above explain how TTh can be
determined on the basis of the available (calculated or
experimentally obtained) Ic(T ) dependence. Then using
the formula (19) one can find such an important param-
eter for practical applications as the effective geometric
size of the SN-N-NS Josephson contacts

Leff = L+ ξN
√
γBM . (30)

Note that Eq. (30) is a direct consequence of Eq. (19)
and is valid up to γBM ≈ 100, as it can be observed from
the comparison of the exact (16) and asymptotic (19)
solutions for ET in figure 2.

Our experimental study of a supercurrent transport
across Nb/Cu-Cu-Cu/Nb34 and Nb/Au-Au-Au/Nb39,41

bridges has shown that the shape of the exponentially-
decreasing dependences of Ic(T ) in a wide temperature
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Figure 3. a, b – Temperature dependences of the critical current density Ic of the SN-N-NS bridge with L = 5ξ calculated numerically
for different interface parameters γBM in linear (panel a) and logarithmic (panel b) scales. c-f – Temperature dependences of the first

derivative of the critical current density
dIc/I0
dT/Tc

for the same parameters in linear (panel c) and logarithmic (panel d) scales, respectively.

The squares, points, and triangles on each of the calculated curves show the temperature values corresponding to ET /(2π), ET /2, and ET ,
respectively. The values of ET were calculated using the expression (19) for each combination of γBM and ξN parameters. Panels e and f
are enlarged versions of panels c and d in the low-temperature region.

range closely resembles that shown in figure 3. At γBM ≲ 5
and large values of L ≳ 4ξN there is the transition at T ≈
Tc(ξN/L)2 from a sharp rise of Ic(T ) to a smoother satu-
ration at T ≪ Tc as temperature decreases. At γBM ≳ 5
and small values of L ≲ 4ξN the change in the slope of
the Ic(T ) dependence takes place at T ≈ Tc/γBM .

In figure 4a we show the most recent experimental
data for the Nb/Au-Au-Au/Nb Josephson bridge with a

diffusive Au stripe operating as weak link. This struc-
ture was fabricated by magnetron sputtering and lift-off
lithography. Further information concerning the fabrica-
tion process can be found in Refs.39,41,51 The approx-
imate distance between the SN electrodes can be esti-
mated as L ≈ 160 nm based on the scanning electron
microscopy (see figure 1b). The thicknesses of niobium
and gold layers are equal approximately 70 nm and 32 nm,
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Figure 4. a – Temperature dependence of the critical current
Ic(T ) for the NbAu-Au-AuNb bridge with the length of the weak
link L = 160 nm (black circles) and numerical fits in the framework
of the model (20)-(25) calculated at ξN = 23 nm and γBM = 0.12
(red line). The red dot marks the temperatures corresponding to
the halfed Thouless energy ET /2. The inset shows the derivative
dIc(T )/dT of the interpolated experimental (black solid line) and
model (red dashed line) Ic(T ) dependencies. b – The least-squares
residual between the experimental data and the model fits in the
γBM − ξ plane of the parameters.

respectively.
To compare the experimental data presented in fig-

ure 4a with the results of the theoretical calculations, we
construct a map which shows the dependence of the stan-
dard deviation between the experimental data and calcu-
lated dependence. The least-squares calculation of the
standard deviation of the theoretical values of the critical
current from the experimentally obtained points is shown
in figure 4b. This procedure results in a detection of a
valley on the γBM − ξ diagram where the experimental
points agree quite well with the theoretical calculation. It
can be seen that the presence of two free parameters γBM

and ξ does not lead to unique fitted solution. For differ-
ent sets of γBM and ξ the formula (19) gives different ET

values.
It should be noted that for the considered case the

expression (19) allows us to specify the range of param-
eters in which it is worthwhile to search for a solution
of the system at sufficiently large effective bridge lengths

L ≳ 5ξ and transparent interfaces γBM ≲ 1. As an ex-
ample, in figure 4a we have shown one of possible approx-
imation of the experimental dependence Ic(T ) with the
solution of the Usadel equations obtained for ξN = 23
nm (L/ξN ≈ 7) and γBM = 0.12 (red line). A large
red dot on this graph marks the temperature T ≈ 0.5K,
which corresponds to ET /2 [see Eq. (19)]. The inset in
figure 4a shows the derivative of the theoretical dIc/dT
dependence (red dashed line) and the interpolation curve
obtained for the experimental points. The red triangle
also marks the point where the temperature T ≈ 1K co-
incides with the value corresponding to ET . It is located
near the minimum of the derivative dIc/dT .

It should be emphasized that according to Eq. (30) for
L/ξN ≈ 7 and γBM = 0.12 the effective size of the struc-
ture Leff ≈ 7.3ξN is actually determined by the distance
between the electrodes L. In this case, the features of the
shape of the dependence Ic(T ) are due to the transition
from exponential to power laws of growth of Ic with de-
creasing temperature. As it can be illustrated in figure 3,
the position of these features correlates quite well with
TTh. For shorter bridges (L ≲ 3ξ) the Ic(T ) dependences
are smoother and the bending of the curves dIc(T )/dT at
T = ET /2 are not as clear as for large L values. Also, in
these case the interface parameter γBM increases result-
ing in a change of the shape of the Ic(T ) dependence.

Thus, we have shown that the expression (19) can
be used to determine the range of parameters in which
the optimal approximation of the experimental results
should be sought. For a more unambiguous extraction of
the structural parameters from the experimental depen-
dence Ic(T ), it is necessary to approximate several sam-
ples simultaneously with different lengths between the
electrodes L, as done in Refs.34,41 and use additional
data ρn and γB extracted from the temperature depen-
dence of the normal-state resistance at T > Tc. This
approach allows one to significantly reduce the range of
parameters for the best fitting by the microscopic model.
However, it requires a complete construction of the pa-
rameter map, which is a rather time-consuming.

We demonstrate that the theoretical curve fits the ex-
perimental data well at T ≲ 4K. The observed discrep-
ancy between the theoretical predictions and the exper-
imental data at higher temperatures (T ≳ 4K) may be
due to the following reasons.

Possible difference in the critical temperature of the
region of the S layer adjacent to the N-film Tcl compared
to the measured Tc of the bulk S electrode, as well as co-
ordinate dependence of Tcl. Another factor could be an
inhomogeneity of the transparency of the NS boundaries,
caused both by mechanical stresses at the NS interfaces,
and their roughness. All these factors lead to the appear-
ance of inhomogeneous island-type superconductivity in
the N-layer which is more pronounced at T → Tc, i.e., to
the appearance of the dependence δ(x) in Eq. (22), which
was not considered in the developed theory.

It should be noted that such a successful coincidence
of the Thouless energy values found from the numerically
calculated dependences Ic(T ) and ones based on expres-
sion (19) does not mean that the ET values determined
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from the shape of the experimental curves Ic(T ) will lead
to the same Leff value determined by Eq. (30). A devia-
tion of the experimentally determined Leff value and the
effective length defined by Eq. (30) may be due to the
fact that some constrains controlling the applicability of
the considered one-dimensional SN-N-NS contact are not
realized experimentally.

Such restrictions include:

1. The smallness of the N-layer thickness compared to
the decay length ξN . When using low-resistivity normal
metals (Al, Au, Ag), the closeness of d to ξN can lead par-
tial suppression of superconductivity in the S-layer near
the SN boundary.52,53

d

ξN

ρS
ρN

ξS
ξN

≲ 0.3, (31)

where ρS and ξS are normal-state resistivity and coher-
ence length of the S-film. Going beyond the one-dimensio-
nal approximation, the temperature TTh actually decreases
as d increases.54 This automatically leads to an increase
in the effective size of the SN-N-NS structure with respect
to the Leff value defined by expression (30).

2. The boundary condition (25) states that the cur-
rent flowing through the N-layer of the SN composite
electrode is negligible compared to the current that has
entered the S-layer of the electrode, i.e.

d

dS

ρS
ρN

≪ (1 + γBM )2, (32)

where dS is the thickness of the S-film. A violation of
this constraint should lead to the appearance of the de-
pendence of the phase difference φ on the x-coordinate
(see also the discussion in point 4 below).

3. At any point of the SN boundary, the density of the
supercurrent injected from the normal metal through this
interface into the S-layer should be less than the critical
current density controlled by the finite transparency of
this boundary, i. e.

1 + γ−1
BM >

d

ζ
max

[
ξN
L

, 1

]
. (33)

4. The final constrain arises from the assumption that
the phase difference φ appearing in Eqs. (20) and (22)
is independent of the x-coordinate. This assumption is
valid for x ≫ L/2. Away from the N-NS boundary, the
superconducting current is uniformly distributed across
the thickness of the NS electrode. The current flows along
the 0x direction, so the current lines do not cross the NS
boundary. As a result, at x ≫ L/2 the phase of the order
parameter in each cross sections of the NS electrode turns
out to be equal to the phase of the anomalous Green’s
functions in both N and S-layers, and the φ(x) function
turns out to be a value independent of x (see Ref.11 for
details).

Conclusion

Thus, through analytical evaluations and numerical cal-
culations, we have shown that the Thouless energy in
Josephson SN-N-NS bridges strongly depends on the re-
sistance of the SN interface. The Thouless energy de-
creases by several times as this resistance increases com-
pared to the SNS sandwich-type contact. We have also
specified the range of validity of our analytical results,
thus providing the possible explanations for the deviation
of the experimentally obtained Leff from our analytical
result (30).

The Thouless energy cannot be measured directly. In-
stead, the Thouless temperature can be determined by
analyzing the shape characteristics of experimentally ob-
tained Ic(T ) dependences. Thouless temperature can be
defined as the temperature corresponding to the satura-
tion of the Ic(T ) dependence at low temperatures and
vanishing of the first derivative dIc/dT . The use of this
method for the experimental determination of TTh re-
quires measurements at rather low temperatures, which
causes additional difficulties in finding TTh. We have
shown that the transition from the study of the depen-
dence Ic(T ) to the determination of peculiar points on
the temperature dependences of dIc(T )/dT located at
T ≈ ET /2 and T ≈ ET allows us to estimate the ET

value in the range of temperatures more convenient for
measurements.

Our numerical calculations carried out in the frame-
work of the one-dimensional SN-N-NS model of the Joseph-
son SN-N-NS structure have shown that there is a rela-
tionship between the value of the Thouless energy ET =
2πTTh determined in this way and the effective geomet-
rical size of the structure Leff [see Eq. (30)] included in
formula (19). The estimate of Leff obtained in this way is
important in determining the limitations to miniaturiza-
tion of the size of superconductor devices for processing
analog and digital signals. It also provides additional
information on the relationship between important tech-
nological parameters such as the NS electrode spacing L,
decay length ξN , and the parameter γBM , which charac-
terizes the transparency of NS boundaries.
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short-junction crossover and field-reentrant critical cur-
rent in Al/Ag-nanowires/Al Josephson junctions. Phys.
Rev. B, vol. 102, 214506 (2020).

[39] Skryabina O. V., Bakurskiy S. V., Shishkin A. G., Kli-
menko A. A., Napolskii K. S., Klenov N. V., Soloviev
I. I., Ryazanov V. V., Golubov A. A., Roditchev
D., Kupriyanov M. Yu., Stolyarov V. S. Environment-
induced overheating phenomena in Au-nanowire based
Josephson junctions. Sci. Rep., vol. 11, 15274 (2021).

[40] Golod T., Hovhannisyan R. A., Kapran O. M., Dremov
V. V., Stolyarov V. S., Krasnov V. M. Reconfigurable
Josephson phase shifter. Nano Lett., vol. 21, 5240-5246
(2021).

[41] Sotnichuk S. V., Skryabina O. V., Shishkin A. G.,
Bakurskiy S. V., Kupriyanov M. Yu., Stolyarov V. S.,
Napolskii K. S. Long Single Au Nanowires in Nb/Au/Nb
Josephson Junctions: Implications for Superconducting

Microelectronics. ACS Applied Nano Materials, vol. 11,
17059-17066 (2022).

[42] Babich I., Kudriashov A., Baranov D., Stolyarov V.
S. Limitations of the Current–Phase Relation Measure-
ments by an Asymmetric dc-SQUID. Nano Lett., vol. 23,
6713-6719 (2023).

[43] Edwards J. T., Thouless D. J. Numerical studies of lo-
calization in disordered systems. J. Phys. C: Solid State
Phys., vol. 5, 807 (1972).

[44] Thouless D. J. Maximum Metallic Resistance in Thin
Wires. Phys. Rev. Lett., vol. 39, 1167–1169 (1977).

[45] Thouless D. J. Electrons in disordered systems and the
theory of localization. Phys. Rep., vol. 13, 93-142 (1974).

[46] Altland A., Gefen Y., Montambaux G.What is the Thou-
less Energy for Ballistic Systems? Phys. Rev. Lett., vol.
76, 1130-1133 (1996).

[47] Usadel K. D. Generalized diffusion equation for super-
conducting alloys. Phys. Rev. Lett., vol. 25, 507 (1970).

[48] Golubov A. A., Kupriyanov M. Y., Siegel, M. Density of
states anomalies in hybrid superconductor-ferromagnet-
normal metal structures. JETP Lett., vol. 81, 180-184
(2005).

[49] Likharev K. K., Iakobson L. A. Steady-state properties of
superconducting bridges. Sov. Phys. – Tech. Phys., vol.
20, 950 (1975).

[50] Kupriyanov M. Yu., Lukichev V. F. The influence of the
proximity effect in the electrodes on the stationary prop-
erties of S–N–S Josephson structures. Sov. J. Low Temp.
Phys., vol. 8, 526-529 (1982).

[51] Fabrication process details along with the full experiman-
tal data for these series of the junctions will be publushed
elsewhere soon.

[52] Kupriyanov M. Yu., Lukichev V. F., Orlikovskii A. A.
Stationary properties of quasi-two-dimensional joseph-
son weak links. Sov. Microelectronics, vol. 15, 185-189
(1986).

[53] Baryshev Y. P., Vasil’ev A. G., Dmitriyev A. A.,
Kupriyanov M. Y., Lukichev V. F., Luk’yanova I. Y.,
Sokolova I. S. Theoretical and experimental study of
the josephson effect in submicron SN-N-NS structures.
Lithography in microelectronics, vol. 8, 187-197 (1989).

[54] Bosboom V., Van der Vegt J. J. W., Kupriyanov M.
Yu., Golubov A. A. Selfconsistent 3D model of SN-N-
NS Josephson junctions. Supercond. Sci. Technol., vol.
34, 115022 (2021).

doi: 000-0000-000-0000 10 Bakurskiy et al. Mesoscience & Nanotechnology,
volume 1, issue 1, 01003 (2024)

https://doi.org/10.1103/PhysRevB.93.180505
https://doi.org/10.1103/PhysRevB.93.180505
https://doi.org/10.1063/1.4940979
https://doi.org/10.1063/1.4940979
https://doi.org/10.1063/1.4984605
https://doi.org/10.1063/1.4984605
https://doi.org/10.1021/acsnano.6b04774
https://doi.org/10.1021/acsnano.6b04774
https://doi.org/10.1088/1361-6668/ab877c
https://doi.org/10.1088/1361-6668/ab877c
https://doi.org/10.1002/andp.202000273
https://doi.org/10.1002/andp.202000273
https://doi.org/10.1103/PhysRevB.102.214506
https://doi.org/10.1103/PhysRevB.102.214506
https://doi.org/10.1038/s41598-021-94720-5
https://doi.org/10.1021/acs.nanolett.1c01366
https://doi.org/10.1021/acs.nanolett.1c01366
https://doi.org/10.1021/acsanm.2c03837
https://doi.org/10.1021/acsanm.2c03837
https://doi.org/10.1021/acs.nanolett.3c01970
https://doi.org/10.1021/acs.nanolett.3c01970
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1103/PhysRevLett.39.1167
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1103/PhysRevLett.76.1130
https://doi.org/10.1103/PhysRevLett.76.1130
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1134/1.1914877
https://doi.org/10.1134/1.1914877
https://doi.org/10.1088/1361-6668/ac2d79
https://doi.org/10.1088/1361-6668/ac2d79

	Proximity effect between extended SN electrode and semi-infinite N-film
	Thouless energy
	Calculation of a supercurrent across  SN-N-NS junction
	Critical current of the long SN-N-NS bridge
	Comparison with experimental data

