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T he extensive development of the field of spiking neural networks has led to many areas of research that have
a direct impact on people’s lives. As the most bio-similar of all neural networks, spiking neural networks not

only allow for the solution of recognition and clustering problems (including dynamics), but they also contribute to
the growing understanding of the human nervous system. Our analysis has shown that hardware implementation
is of great importance, since the specifics of the physical processes in the network cells affect their ability to
simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing,
storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired
spiking networks in the ”semiconductor”, ”superconductor”, and ”optical” domains. Special attention is given
to the potentials for effective ”hybrids” of different approaches.
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1 Introduction

The last decade has demonstrated a significant increase
in interdisciplinary research in neuroscience and neurobi-
ology (this was reflected even in the decisions of the Nobel
Committee1,2 in 2024). The convergence of mathemat-
ics, physics, biology, neuroscience and computer science
has led to the hardware realisation of numerous models
that mimic the behaviour of living nervous tissue and
reproduce characteristic neural patterns. Spiking neural
networks (SNNs) have played a crucial role in these fields
of knowledge. In these networks, neurons exchange short
pulses (about 1-2 ms for bio-systems) of the same am-
plitude (about 100 mV for bio-systems).3,4 SNNs come
closest to mimic the activity of living nervous tissue (ca-
pable of solving surprisingly complex tasks with limiting
resources) and have the greatest biosimilarity and bioin-
spirability.

Spiking neural networks use a completely distinct
method of information transfer between neurons: they
encode input data as a series of discrete-time spikes that
resemble the action potential of biological neurons. In
fact, the fundamental idea of SNNs is to achieve the clos-
est possible biosimilarity and use it to solve specific tasks.
These problems can be roughly divided into two groups:
the first group is focused on solving traditional neural
network challenges, with more emphasis on dynamic in-
formation recognition (speech, video), while the second
group is aimed at imitating the nervous activity of liv-
ing beings, reproducing characteristic activity patterns,
recreating the work of the human brain. Currently, there
is an ambitious project that aims to create a full-fledged
artificial mouse brain.5 Moreover, the second group in-
cludes such tasks as: using motor biorhythms for neu-
ral control in robotics,6–8 controlling human movements
(bioprosthetics, functional restoration of mobility),9 un-
derstanding learning processes and memory effects,10–12

creating brain-computer interfaces,13–17 etc.
Therefore, hardware development of bio-inspired SNN

is very vital and promising. For this reason, it is cru-
cial to recognise the current progress and conditions for
the development of this field, taking into account the im-
mense amount of information that is growing every day.
Moreover, in terms of signalling, SNN is better suited to
hardware implementation than artificial neural network
(ANN), since neurons are only active at the time when
a voltage spike is generated, which reduces the overall
power consumption of the network and simplifies compu-
tation.

Figure 1 illustrates the intensification of work on the
topic over the last decades. This is the period with a sig-
nificant increase in publication activity. Here we show the
analysis of publication activity (indexed in Dimensions
and OpenAlex databases) on the topic of spiking neural
networks and on the topic of spiking neural networks fil-
tered by the keywords ’bio-inspired’. Since around 2016,
there has been a significant increase in interest in the
topic of spiking neural networks as well as in the topic
of bio-inspired networks. All studies presented in these
publications have been carried out for different implemen-

Figure 1. The histograms illustrating the number of the publi-
cations based on data from Dimensions and OpenAlex databases
from a search on the topic ”spiking neural network” (light-blue his-
togram) and a search filtered by the keyword “bio-inspired” (light-
green histogram), presented retrospectively from the year 2000.

tations of SNNs: software, CMOS (especially memristor-
based), superconducting, optical, and hybrid ones.

In this paper we review the advances in different hard-
ware directions of bio-inspired spiking neural network evo-
lution and provide a brief summary of the future of the
field, its advantages, challenges, and drawbacks. Further-
more we have reviewed the basic software implementa-
tions of SNNs.

The first part of this review is devoted to the math-
ematical foundations of bio-inspired spiking neural net-
works, their idea and software realisation. The second
part is dedicated to the CMOS-based bio-inspired neu-
romorphic circuits, where we have talked about semicon-
ducting and memristive realisations. The third part is
devoted to superconducting realisations, not of the whole
network, but of its elements and some of its functional
parts. Finally, we have considered bio-inspired elements
for optical neuromorphic systems and provide a brief dis-
cussion of each area of activity as well as a general con-
clusion on the evolution of bio-inspired neuromorphic sys-
tems.

The brief conclusion is that there is no single approach
that has overwhelming advantages at the current mo-
ment, and it is quite likely that the necessary direction
of development of the field has not yet been found. How-
ever, we can already say with certainty that the hybrid
approach can provide some success in the formation of
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complex deep spiking neuromorphic networks.

2 Mathematical fundamentals of bio-inspired
spiking neural networks

A spiking neural network is fundamentally different from
the second generation of neural networks: instead of con-
tinuously changing values over time, such a network works
with discrete events (chains of events) that occur at spe-
cific points in time. Discrete events are encoded by im-
pulses (spikes) received at the input of the neural network
and processed by it in a specific way, as shown in figure 2.
The output of such a network is also a sequence of spikes,
encoding the result of the network’s activity. In a real
neuron, the transmission of impulses is described by dif-
ferential equations that correspond to the physical and
chemical processes of action potential formation. When
the action potential reaches its threshold, the neuron gen-
erates a spike and the membrane potential returns to its
initial level, see figure 2a. An accurate representation of
neuronal activity and its response to various input signals
requires a general mathematical model that describes all
the necessary processes associated with its spike activ-
ity and action potential formation, while remaining suffi-
ciently simple for its successful use in various applications.

2.1 Mathematical models of bio-inspired neurons and net-
works

2.2 Hodgkin-Huxley model

The discussion of applications begins with the simplest
and most studied software implementations of SNNs: the
most popular way to describe the initiation and propaga-
tion of action potentials in neurons is the Hodgkin-Huxley
(HH) model.18

The HH model is treated as a conductance-based sys-
tem where each neuron is a circuit of parallel capaci-
tors and resistors19 and describes how action potential
in nerve cells (neurons) is emerged and propagated. Ba-
sically, the HH model contains20 four components of the
current flowing through the neuron membrane, formed by
lipid bilayer and possessing of potential Vm: the current
flowing through the lipid bilayer (Ic), currents flowing
through the ion channels (INa and IK), and the leakage
current (Il). The lipid bilayer – nerve cell membrane – is
introduced in the form of the capacitance Cm, ion-gated
channel – by the conductance gi (where i is a correspond-
ing ion) per unit area and leakage current introduced by
the conductance gl per unit area. Thus, for a cell model
that contains only sodium and potassium ion channels,
the total current flowing through the membrane is de-
scribed by the following equation

I = Cm
dVm

dt
+ gK(Vm − VK) + gNa(Vm − VNa)

+ gl(Vm − Vl). (1)

Of course, the biochemical processes in the living nerve
cell are more complicated and therefore the HH model

Figure 2. a – Illustration of a biological neuron and its operating
principles. b – Conventional ANN operating principle (top) and
output representation (bottom). The input vector is processed by
multiplying the input vector by the corresponding weight vector
(denoted W ) and then passing it to the activation function. Out-
put values are represented in floating-point numbers that can be
processed at the software level. c – Operating principle of a spik-
ing neural network (top) and output representation (bottom). The
input signal is processed by the hardware implementation of the
neuron. Output values are represented in spike trains, which dif-
fer in the emission time of each spike and the overall density, and
also serve as inherent memory. These images were adapted from
Ref. [21] and recomposed by authors.

could be modified by adding extra terms for other ions
(Cl− or Ca++, for example) or by using non-linear con-
ductance models (gi = f(t, V )) instead of constant values.

Izhikevich model

One of the most computation-efficient and simultaneously
accurately representative for neurons’ activity is the
Izhikevich model. According to Ref. [23], bifurcation
methodologies24 enable us to reduce many biophysically
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Intracellular

Extracellular

Figure 3. Electrical analog of the Hodgkin-Huxley model (this
figure is adapted from Ref. [22]). The capacitance Cm represents
a lipid bilayer – neuron membrane with potential Vm. Non-linear
electrical conductances resemble voltage-gated ion channels gK+

and gNa+ , while gLeak corresponds to the leakage channel. Pa-
rameters ENa+ , EK+ , and ELeak correspond to the reversal ions
potentials and leak reversal potential, respectively.

accurate Hodgkin-Huxley-type neuronal models to two-
dimensional (2D) system of ordinary differential equa-
tions {

v̇ = 0.04v2 + 5v + 104− u+ I,

u̇ = a (bv − u),
(2)

with the auxiliary after-spike resetting

if v ≥ 30 mV, then

{
v ← c,

u← u+ d.
(3)

Here, v and u are variables, a, b, c, and d are parame-
ters, and dot notation is time derivative. Neuron’s mem-
brane potential and recovery are described by v and u,
and when v reaches its maximum value of +30mV, u
is restored, see Eq. (3). They are affected by the pa-
rameter b which describes recovery variable sensitivity to
sub-threshold fluctuations of v, promoting possible low-
threshold oscillations when increased. The case b < a
(b > a) corresponds to saddle-node (Andronov-Hopf) bi-
furcation of the resting state.25 Variable u is also affected
by the parameter a which stands for the time scale of the
variable, speeding up or slowing down recovery, and the
parameter d, which is responsible for after-spike reset of
u caused by slow high-threshold Na+ and K+ conduc-
tances. Fast high-threshold K+ conductances affect on v
is expressed in the remaining parameter c, that describes
the after-spike reset value of v.

The combination 0.04v2 + 5v + 140 provides scaling
for membrane potential v to mV and ms scales and was
derived from fitting the initiation dynamics of the spike.
The resting potential in the model23 is between −70 and
−60mV depending on the b parameter. But in real prac-
tice, the model does not have a fixed threshold, depending
from the value of v before the spike formation.

Leaky Integrate-and-Fire Neuron Model

The really frequently used hardware model is implemented
on principles of so-called Leaky Integrate-and-Fire (LIF)

neurons. Such neurons, whose membrane potentials V
evolve at time step t according to some variation of the
following dynamics, described in following manner:26

V[t] = λV[t− 1] +WX[t]− S[t]Vth, (4)

where λ ∈ [0, 1) is a membrane leakage constant, X is an
input (i.e., an external stimuli to the network or the spik-
ing activity from another neuron), W is a weight matrix,
and the binary spiking function

S[t] =

{
1, if V[t] > Vth

0, otherwise.
(5)

is a function of the threshold voltage Vth.

2.3 Coding information in SNN

The brain of a living being processes a wide variety of in-
formation, which can come from different sensory organs
as well as signals from the nervous system of different
internal organs. How does the brain understand which
signal comes from the optic nerve and which from the au-
ditory nerve, for example? There are different ways of en-
coding incoming information, processing it by a specially
trained neural network (a specific area in the brain) and
interpreting the results of the processing. In other words,
there are ways of encoding input and output signals. And
both are very important: in the first case, the informa-
tion is encoded so that the system can work with it, and
in the second case, so that the general decision-making
centre (the brain) can perceive or handle the processed
information. Two types of coding are generally used in
artificial SNNs: rate coding and temporal (or latency)
coding, although there are others.27

Rate coding converts input information intensity into
a “firing” rate or spike count. For example, a pixel in
some image, that has a specific RGB code and bright-
ness, can be converted or coded into a Poisson train –
a sequence of spikes, based on this information (infor-
mation of its intensity). There are several types of rate
coding: count rate coding, density rate coding and popu-
lation rate coding. In terms of output interpretation, the
processing centre will select the one that has the highest
“firing” rate or spike count at a particular point in time.

Another natural principle of information coding is a
temporal (or latency) coding. One converts input inten-
sity to a spike time, referring to spike timing and paying
attention to time moment when the spike has occurred.
The spike weighting ensures that different “firing” times
lead to different amount of information. The earlier a
spike arrives, the larger weight it carries, and the more
information it transmits to the post-synaptic neurons. In
terms of output interpretation, the processing centre se-
lects the signal that, by a certain point in time, came first
(selects the signal from that output neuron among other
output neurons that fused first).

There is also another type of information coding called
delta modulation. This type of coding consists of convert-
ing the incoming analogue information signal into a spike
train of temporal changes in signal intensity (magnitude).
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For example, if the input signal is increasing, the network
input will receive spikes at a certain frequency, which de-
pends on the rate of increase of the signal (its derivative):
the faster the signal increases in time, the more frequent
the spikes is. Conversely, the signal decreasing will be
accompanied by the absence of spikes.

2.4 SNN learning techniques

The complex dynamics of spike propagation over SNNs
makes it difficult to design a learning algorithm that gives
the best result. Currently, there are three main types of
methods for training spiking neural networks, as referred
in Ref. [27]: shadow training, backpropagation on spikes
training and training based on local learning rules.

Shadow training

The idea of this shadow training technique is to use the
training algorithms of a conventional ANN to build a
spiking network by converting a trained ANN into a
trained SNN. This process takes place as follows: first, the
conventional ANN is trained, then the activation function
of each neuron in the ANN is replaced by a separate oper-
ator that non-linearly transforms the signal incoming to
the neuron by the spike frequency or by the delay between
spikes. For example, conversion process from convolu-
tional neural network to SNN can be done by manually
reprogramming convolution kernel for spike train inputs
in order to make the SNN produce the same output as
the trained convolutional neural network (CNN).28 At the
same time, the net weights remain the same.

The main advantage of this training process is that
the most of the time we deal with an ANN, with all of its
benefits of training conventional neural networks. Such
approach is used in tasks related to that of ANNs that
aimed to image classification. Despite that, the process of
converting activation functions into spike trains usually
requires a large number of simulations time steps which
may deteriorate the initial idea of spiking neuron energy
efficiency. And, the most important one, is that con-
version process is doing an approximation of activation,
negatively affecting the performance of a SNN. The last
further confirms the fact that other learning algorithms
need to be developed to train SNNs, till then SNNs will
remain just a shadow of ANNs.

Backpropagation training

Backpropagation training algorithm for ANNs can also be
implemented for SNNs by calculating gradients of weight
change for every neuron. Implementations of this algo-
rithm for SNNs may vary since, according to original
ANNs backpropagation the learning requires to calculate
the derivative of the loss function. And as we know, the
uses of derivative over spikes is not the best idea, be-
cause spikes generation depends on membrane threshold
potential as a step-function and the derivative becomes
infinite. To avoid this, backpropagation techniques for

SNN take other neuron output signal parameters into ac-
count, i.e. backpropagation method using spikes utilises
changes of spike timing rate according to the network
weights change.

Backpropagation method has several advantages, such
as the high performance on data-driven tasks, low energy
consumption, and high degree of similarity with recur-
rent neural networks in terms of training process. De-
spite the similarity with well-established ANN backprop-
agation method, the drawbacks of backpropagation for
SNNs method consist of several subjects. First of all,
this method can not fully replicate effectiveness of op-
timising a loss function, meaning that there is still an
accuracy gap between SNNs and ANNs, which remains
to be closed up for today. Additionally, once neurons be-
come inactive during the training process, their weights
become frozen.

In some cases, there are alternative interpretations of
this algorithm, for example, such as the forward propa-
gation through time29 (FPTT) which is used for recur-
rent SNN training. This algorithm is devoid of many
drawbacks that follow conventional backpropagation al-
gorithm, removing the dependence on partial gradients
sum during the gradient calculation. The most peculiar
feature of this algorithm is that along with regular loss it
computes dynamic regularisation penalty, which is calcu-
lated on previously encountered loss value, transforming
recurrent nertwork training to resemble feed-forward net-
work training.

Local learning rules

Neurons are trained locally, treating local spatially and
temporary signal as an input for a single neuron’s weight
update function. Namely, backpropagation technique deals
only with finite sequences of data, restricting the tempo-
ral dependencies that can be learned. This algorithm also
tries to compute gradients as it is done in backpropaga-
tion, but does it through the computations that make
these gradient calculations temporally local. However,
this algorithm demands significantly more computations
in comparison with backpropagation, which rejects the
possibility of this algorithm to replace conventional back-
propagation despite being more biologically plausible.

The constraint imposed on brain-inspired learning al-
gorithms is that the calculation of a gradient should, like
the forward pass, be temporally local, i.e. that they only
depend on values available at either present time. To ad-
dress this, learning algorithms turn to their online coun-
terparts that adhere to temporal locality. Real-time re-
current learning30 (RTRL) proposed back in 1989 is one
prominent example.

2.5 Towards hardware implementations of SNN

To extend the understanding of the concept of how spik-
ing neural networks work, in this section we will review
a schematic process of solving the problem of exclusive
OR (XOR) logical operator with a SNN on an example
presented in Ref. [31]. Since XOR is considered a fairly

doi: 000-0000-000-0000 5 Schegolev et al. Mesoscience & Nanotechnology,
volume 1, issue 1, 01005 (2024)



Review

simple logic gate, it will serve as an excellent demonstra-
tion of SNN training and operation. In fact, operating
with SNNs has almost the same challenges as in training
ANNs: for example, which data representation to choose
to effectively describe the problem, what structure should
the network have, how to interpret the network output
and so on. That is, we should guide our approach to a
certain problem in the same way as it is done in ANNs
on the general scope, including the XOR problem.

The training process for the chosen task can be sepa-
rated into several steps:

� Neuron model
Due to low complexity of this task, it is most effi-
cient to use a simple neuron model as well. In that
case, the LIF model suits this problem the best be-
cause its easy to control and does not produce un-
wanted complexity.

� Data representation
Since we test the possibility of creating a network
of spiking neurons to perform logic gate operations,
the input data can be simply labeled in two in-
puts. Each input has to carry its own represen-
tative frequency in order to be separable for the
network. Taking these statements into account, we
can (for example) define the frequency input values
as 25Hz for the Boolean Zero (“0”) and 51 Hz for
the Boolean One (“1”). These values are chosen
as they are decisively different from each other and
can be clearly represented visually.

� Structure
The neural network structure represents the logic
gate as follows: two input neurons that encode any
combination of “0” and “1”, hidden layer neurons
represent any possible combination of 0’s and 1’s,
and output layer produces the predicted output, as
shown in figure 4.

Figure 4. SNN architecture for the XOR problem solving (this
figure was adapted from Ref. [31]). Input neurons A and B can re-
ceive any combination of “0” and “1”. Each RF block demonstrates
Receptive Field application to neuron input/output. The number
on hidden neurons layer represent the combination of “0” and “1”
they implied to respond to.

� Receptive fields filter (RFF)
To strengthen the response for designated frequen-
cies for the corresponding neurons, RFF is added
to every hidden layer neurons’ connections. Adding

the RFF helps neurons to detect particular frequen-
cies, filtering the ones that are outside their re-
sponse range. The RFF formula31 is kij = exp(−(xm−
y0)

2/d2m) where kij is a scalar variable which will
modify the output spike train frequency of the re-
lated neuron, xm is the operating frequency of the
RFF, y0 is the input spike train frequency to the
RFF and dm denotes the width of the RFF, allow-
ing the filter to distinguish more frequencies.

� Input encoding
The input frequencies are encoded into linear spike
trains, i.e. the value of the distance between the
action potentials, known as the inter-spike interval
(ISI), is treated to be a constant. The network was
designed to take advantage of the precise timing
between action potentials. If the ISIs on input A
are synchronised with the ISIs on input B, it means
that both inputs have identical frequency.

� Training
Usage of RFF is an effective and biologically plausi-
ble way to reduce complexity and fault vulnerability
in this problem. Because of that, as well as small
number of neurons, manual fine-tuning of thresh-
olds and weights will be enough to train the network
to produce accurate results, successfully recognising
all possible XOR combinations. However, upon in-
creasing the size of the network, implementing one
of network training algorithms will be inevitable.

For conclusion to this example it is important to high-
light that one should pay attention to training process
workflow and investigate the problem deeply to be able
to recognise all the obstacles that may be encountered
during training (i.e. in the XOR problem proper sig-
nal frequency interpretation would not be possible with-
out RFF). Considering the training workflow, the most
important parts of this are the neuron model and in-
put/output coding, since it can determine crucial aspects
of problem interpretation from network implementation’s
point of view. Conversely, network training algorithms
for weights optimisation play lesser role in this process,
because they can only affect computational complexity
to be performed and their influence on results accuracy
becomes noticeable only if the task implies implementing
state-of-art network or results close to it.

3 CMOS-based bio-inspired neuromorphic
circuits

The last decades of electronics and electrical engineer-
ing are clearly associated with the development of the
conventional complementary metal-oxide-semiconductor
(CMOS) technology.32,33 Semiconductors are well estab-
lished in many devices that we use 7 days a week, all
year round. It is therefore not surprising to see varia-
tions in the hardware implementation of SNNs based on
semiconductor elements. Globally, all CMOS SNN im-
plementation options can be divided into two parts, with
the focus on either transistors or memristors. Examples
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of semiconductor implementations of neuron circuits are
shown in figure 5. Two CMOS solutions for implement-
ing the functions of the single neuron model developed by
IBM (for TrueNorth) and Stanford University (for Neuro-
grid) are presented here. In both cases, the realisation of
the functions of even a single neuron (more precisely, the
neuron soma) requires the involvement of a large number
of elements.

3.1 Silicon-based neuron: operation

As might be expected, the realisation of spike sequence
generation in CMOS technology differs from the way it
is done in software models. Since semiconductor circuits
operate with voltage levels, generating a spike as a non-
linear voltage response requires some tricks. To better
understand how SNNs work at the hardware level and
how spike formation occurs, let us briefly review the op-
eration of the basic elements of such networks, which are
isomorphic to ion-gated channels.32,36

Realisation of ion-gated mechanisms

The goal of creating semiconductor models of neuromor-
phic spiking neural networks is to reproduce the biochem-
ical dynamics of ionic processes in living cells. The first
step is to reproduce the ion-gated channels responsible
for the different voltage response patterns. The HH neu-
ron model discussed above is essentially a thermodynamic
model of ion channels. The channel model consists of a
number of independent gating particles that can adopt
two states (open or closed) which determine the perme-
ability of the channel. The HH variable represents the
probability that a particle is in the open state or, in pop-
ulation terms, the fraction of particles in the open state.

In a steady state, the total number of opening par-
ticles (the opening flux, which depends on the number
of closed channels and the opening rate) is balanced by
the total number of closing particles (the closing flux).
A change in the membrane voltage (or potential) causes
an increase in the rate of one of the transitions, which in
turn causes an increase in the corresponding flux of par-
ticles, thereby modifying the overall state of the system.
The system will then reach a new steady state with a new
ratio of open to closed channels, thus ensuring that the
fluxes are once again in equilibrium.

This situation becomes even clearer if we consider it
from the perspective of energy balance. Indeed, a change
in the voltage on the membrane is equivalent to a change
in the electric field across it. Then the equilibrium state
of the system depends on the energy difference between
the particles in the different states: if this difference is
zero and the transition rates are the same, the particles
are equally distributed between the two states. Other-
wise, the state with lower energy will be preferred and
the system will tend to move to it. Note that in the HH
model, the change in the population of energy states is ex-
ponential in time. A similar situation is with the density
of charge carriers at the source and drain of the transistor
channel, the value of which also depends exponentially on

the size of the energy barriers. These energy barriers ex-
ist due to the inherent potential difference (electric field)
between the channel and the source or drain. Varying
the source or drain voltage changes the energy level of
the charge carriers.

The similarity of the physics underlying the operation
of neuronal ion channels and transistors allows us to use
transistors as thermodynamic imitators of ion channels.
In both cases, there is a direct relationship between the
energy barrier and the control voltage. In an ion chan-
nel, isolated charges must overcome the electric field gen-
erated by the voltage across the membrane. For a tran-
sistor, electrons or holes must overcome the electric field
created by the voltage difference between the source, or
drain, and the transistor channel. In both of these cases,
the charge transfer across the energy barrier is governed
by the Boltzmann distribution, resulting in an exponen-
tial voltage dependence.37 To model the closing and
opening fluxes, we need to use at least two transistors,
the difference of signals from which must be integrated
to model the state of the system as a whole. A capacitor
(Cu) does the integration, assuming that the charge rep-
resents the number of particles and the current represents
the flux. The voltage on this capacitor is linearly propor-
tional to its charge gives the result. In 2007 Hynna and
Boahen suggested the following circuit (figure 6 to simu-
late a voltage-driven ion channel. Each transistor defines
an energy barrier for one of the transition rates: transis-
tor N1 uses its source and gate voltages (uL and VCLOSE,
respectively) to define the closing rate, and transistor N2
uses its drain and gate voltages (uH and VOPEN) to de-
fine the opening rate (where uH > uL). The difference
in transistors currents is collected on the capacitor Cu.
The magnitude of the energy barriers is independent of
the capacitor voltage uV , so the value of uV indicates the
fraction of open channels and increases as the particles
switch more and more to the open state. The variable’s
steady-state value changes sigmoidally with membrane
voltage, dictated by the ratio of the opening and closing
rates.

Integrate-and-fire neuron realisation

Now we are ready to understand the membrane voltage
and spike formation. The explanation of these processes
will be conducted based on a model of an integrate-and-
fire neuron realised using MOSFETs (M1, M2, M3), ca-
pacitance (Cmem) and p−n− p−n diode (D0),38 shown
in figure 7a. The designated components perform the
following roles: Cmem contributes to the increase in the
membrane voltage (Vmem); D0 generates spike voltages
(VSPIKE); M1 acts as a resistor and the resistance con-
tributes to the determination of the VSPIKE value; M2
and M3 are responsible for resetting the spiking and
membrane voltages, respectively.

The presented neuron circuit operation begins with
the flow of synaptic current pulses (step 1) from pre-
synaptic devices into the neuron circuit. Charges carried
by the input current are integrated into Cmem. The tem-
poral integration of charges increases Vmem which is the
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Figure 5. Semiconductor solutions for realising bio-inspired neuron functions: a – TrueNorth neuron circuit, b – Neurogrid neuron’s soma
circuit. These images were adapted from Refs. [34] and [35].

Figure 6. a – Voltage-dependent silicon ion channel model based
on two transistors. b – Simulation of steady state voltage level (uV )
versus the membrane voltage (V ). Note that VOPEN and VCLOSE

are proportional to V and −V respectively. These images were
adapted and modified from Ref. [37].

anode voltage of D0 (step 2). VSPIKE is abruptly gen-
erated when Vmem reaches a triggering threshold voltage
for the latch-up of the anode current of the diode (step 3).
The VSPIKE value is determined by the voltage division
of the diode and M1. The generation of VSPIKE supplies
the gate voltages to M2 and M3 and opens the channels
of these transistors (step 4). The discharge current flows
from Cmem to the ground through the M3 channel (step
5), and this flow rapidly decreases Vmem (step 6). Simul-
taneously, the reset current flows from the cathode of D0
to the ground through the M2 channel (step 5). Even-

tually, the opening of the M2 and M3 channels resets
the anode and cathode voltages to zero (step 6), and ac-
cordingly VSPIKE becomes zero. Thus, the latch-up of D0
and the subsequent opening of the M2 and M3 channels
cause the presented neuron circuit to fire VSPIKE pulses
toward post-synaptic devices.38

Figure 7b illustrates the manner in which the mem-
brane current changes with the membrane voltage during
the charging and discharging of Cmem. We can see that
the neuron circuit mimics the (1) temporal integration,
(2) trigger threshold, (3) depolarisation, (4) repolarisa-
tion and (5) refractory period of a biological neuron. The
membrane current does not flow during the temporal in-
tegration of charges in Cmem (step 1 in figure 7). When
the temporal integration reaches the threshold voltage
(steps 2 and 4), the membrane current increases abruptly
(step 3). This moment corresponds to the depolarisation
of the electrical action potential in a biological neuron.
Discharging Cmem after depolarisation (step 5) results in
a rapid and then gradual decrease in membrane current
(step 6), which corresponds to the repolarisation of the
electrical action potential in a biological neuron. As the
membrane current becomes negligible, the presented neu-
ron circuit remains in the refractory period.38
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Figure 7. a – Integrate-and-fire neuron circuit with the illustration
of the operation mechanism. b – The dependence of membrane
current on membrane voltage. These images were adapted and
modified from Ref. [38].

.

Izhikevich neuron model with silicon-based realisation

In 2008 Wijekoon and Dudek [39] suggested the circuit
that implements the cortical neuron (figure 8), inspired
by the mathematical neuron model proposed by Izhike-
vich in 2003. The circuit contains 14 MOSFETs, based
on which three blocks are operating: membrane poten-
tial circuitry (transistors M1 – M5 and the capacitance
Cv), slow variable circuitry (transistors M1, M2 and M6
– M8) and comparator circuitry (M9 – M14). Cv in-
tegrates a positive feedback current that generate spikes
(generated by M3 and flowing from one to Cv), leakage
current (generated by M4) and post-synaptic input cur-
rent (excitatory or inhibitory). If a spike is generated,
it is detected by the comparator circuit which provides a
reset pulse on the gate of M5 that rapidly hyperpolarises
the membrane potential (V on Cv) to a value determined
by the voltage at node c. The transistor M5 size is de-
signed so that the capacitor Cv is fully discharge during
the voltage pulse coming from the comparator circuit by
feedback loop (to the gate of M5).

The slow variable circuit works as follows. The magni-
tude of the current supplied by M7 is determined by the
membrane potential (voltage at Cv), in a manner anal-
ogous to that observed in the membrane circuit. The
scaling of transistors M3 and M7 ensures that the drain
current of M7 is less than that of M3, while the capac-
itance value of Cu is selected to be greater than that of
Cv. This guarantees that the potential at Cu varies more
slowly than at Cv. The sum of these currents is inte-
grated across the slow variable capacitor, designated as

Figure 8. Illustration of the cortical neuron circuit, based on 14
MOSFETs and emulated Izhikevich neuron model. This figure was
adapted and modified from Ref. [39].

Cu. Additionally, following a membrane potential spike,
the comparator (right part of figure 8) generates a volt-
age pulse (arriving at the base of M8) that opens the
transistor, identified as M8. The modest dimensions of
M8 and the brief duration of the voltage pulse that opens
it guarantee that the capacitance Cu is not entirely reset
to V(dd). Instead, an additional quantity of charge, regu-
lated by Vdd, is transferred to Cu. It can be demonstrated
that each membrane spike results in a rapid increase in
the slow variable potential. This, in turn, gives rise to an
increase in the leakage current of the membrane potential,
which in turn causes a slowing down of the depolarisation
following the spike.

In the comparator circuit, the voltage VTHD is re-
sponsible for detecting the membrane potential threshold
when a spike is coming. The voltage VBIAS controls the
bias current in the comparator. When the membrane po-
tential rises above VTHD, the voltage at the M8 gate is
decreased and the voltage at the M5 gate is increased,
generating reset signals. The reset signal is delayed, so
the membrane potential V (in the membrane potential
circuit at Cv) continues to rise beyond VTHD, up to Vdd,
but as soon as the voltage at M5 gate is increased, the
membrane potential is reset to Vc, which is lower than
VTHD. Next, the voltages at the M5 and M8 gates re-
turn to their resting voltage levels, completing the reset
pulses. Transistor M14 increases the comparator current
during the spike, providing the required amplitude and
duration of the reset pulse of the voltage at gate M8.39

The basic circuit comprises 202 neurons with differ-
ent circuit parameters, including transistor and capac-
itance sizes. Fabrication was conducted using 0.35µm
CMOS technology. Since the transistors in this circuit
operate mainly in strong inversion mode, the excitation
patterns are on an ”accelerated” time scale, about 104

faster than biological real time. The power consumption
of the circuit is less than 10 pJ per spike.32,39 Main types
of characteristic firing patterns of suggested circuit are
demonstrated in figure 9.

3.2 Transistor-based realisations

This section is devoted to reviewing such significant projects
as SpiNNaker, Neurogrid, TrueNorth, NorthPole and Loihi.
And despite the fact that at the moment of IBM’s chip
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Figure 9. Experimental firing patterns obtained from the fabri-
cated chip containing 202 neurons using 0.35µm CMOS technology.
Demonstrated patterns are responses to the input current step for
various parameters of bias voltages at nodes c and d. This figure
was adapted and modified from Ref. [39].

creation there were already such projects as SpiNNaker40

(2012) and Neurogrid35 (2014), we will start with the re-
view of the TrueNorth neuromorphic processor, since in
our opinion it was the first hardware implementation of
the idea of neuromorphic computing.

TrueNorth

The field of brain-inspired technologies was marked in
2015 by the release of the first neuromorphic chip: IBM
TrueNorth (figure 10a), a neuromorphic CMOS integrated
circuit. The TrueNorth chip architecture is based on an
organic neurobiological structure, but with the limita-
tions of inorganic silicon technology. The main purpose of
this platform was to reproduce the work of existing neu-
ral network algorithms of speech and image recognition in
real time with minimal energy consumption.34 This neu-
romorphic chip contains 4096 neurosynaptic nuclei com-
bined into a two-dimensional array, and contains a total
of 1 million neurons and 256 million synapses. The chip
has a peak computing performance of 58GSOPS with
a power consumption of 400GSOPS/W (here GSOPS
means Giga-synaptic operations per second).

The use of the term ”neuromorphic” itself implies that
the chip is based on an architecture that differs from the
familiar von Neumann architecture. Unlike von Neumann
machines, the TrueNorth chip does not use sequential pro-
grams that map instructions into linear memory. The
chip consists of spiking neurons, which are connected in
a network and communicate with each other via spikes
(voltage pulses). Communication between neurons is tun-
able, and the data transmitted can be encoded by the fre-
quency, temporal and spatial distribution of the spikes.
TrueNorth is designed for a specific set of tasks: sensory
processing, machine learning and cognitive computing.
However, just as in the early days of the computer age and
the emergence of the first computer chips, the challenges
of creating efficient neurosynaptic systems and optimising
them in terms of programming models, algorithms and
architectural features are still being solved. Currently,
the IBM Truenorth chip is being used by DARPA (De-
fense Advanced Research Projects Agency) for gesture

and speech recognition.
An IBM Research blog post on TrueNorth’s perfor-

mance notes that the classification accuracy demonstrated
by the system is approaching the performance of 2016
state-of-art implementations, not only for image recog-
nition but also for speech recognition. The41 reports
performance data for five digital computing architectures
running deep neural networks. A single TrueNorth chip
processes 1200-2600 32 × 32 colour images per second,
consuming 170-275mW, yielding an energy efficiency of
6100-7350FPS (here FPS means frames per second).
TrueNorth multi-chip implementations on a single board
process 32×32 color images at 430-1330 per second and
consume 0.89-1.5W, yielding an energy efficiency of 360-
1420 FPS/W. SpiNNaker delivers 167 FPS/W while pro-
cessing 28×28 grayscale images (in a configuration of 48
chips on one board).42 Tegra K1 GPU, Titan X Graphics
processing unit (GPU) and Core i7 CPU deliver 45, 14.2
and 3.9 FPS/W, respectively, while processing 224×224
color images.41,43

SpiNNaker

The SpiNNaker (Spiking Neural Network Architecture)
project, the brainchild of the University of Manchester,
was unveiled in January 2012. It is a real-time micropro-
cessor-based system optimised for the simulation of neu-
ral networks, and in particular spiking neural networks.
Its main purpose is to improve the performance of soft-
ware simulations.40,44 SpiNNaker uses a custom chip
based on ARM cores that integrates 18 microprocessors in
102mm2 using a 130 nm process. The all-digital architec-
ture uses an asynchronous message-passing network (2D
torus) for inter-chip communication, allowing the whole
system to scale almost infinitely. In experiments42,45,46 a
48-chip board (see figure 10d) was used, which can simu-
late hundreds of thousands of neurons and tens of millions
of synapses, and consumes about 27-37W in real time (for
different neuron models a network configuration). On av-
erage, 2000 spikes formed into a Poisson train were used
to encode a digit character from the MNIST dataset, with
a classification latency of 20 ms.

In summary, SpiNNaker is a high-performance, appli-
cation-specific architecture optimised for tasks from neu-
robiology and neuroscience in general. It is claimed that
the system can also be used for other distributed com-
puting applications such as ray tracing and protein fold-
ing.45 The experimental studies performed suggest that
for parallel modelling of deep neural networks, a dedi-
cated multi-core architecture can indeed be energy effi-
cient (compared to competitors and general purpose sys-
tems) while maintaining the flexibility of software-im-
plementable models of neurons and synapses.

In 2021 the second generation of neuromorphic chip
by the collaboration of Technische University of Dres-
den and University of Manchester was released – SpiN-
Naker2. Its development was conducted within the Euro-
pean Union flagship project “Human Brain Project”. The
overall approach utilised in the creation of SpiNNaker2
has the following parts: keep the processor-based flexi-
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bility of SpiNNaker1, don’t do everything in software in
the processors, use the latest technologies and features
for energy efficiency and allow workload adaptivity on all
levels.44 One SpiNNaker2 chip consists of 152 advanced
RISC machines (ARM) processors (processing elements)
arranged in groups of four to quad-processing-elements
which are connected by a Network-on-Chip (NoC) to al-
low scaling towards a large neuromorphic System-on-Chip
(SoC). The full-scale SpiNNaker2 will consist of 10 million
ARM cores distributed across 70000 chips in 10 server
racks. We’d also highlight that the second generation
is designed on a different technical process. Specifically,
SpiNNaker1 was realised on 130 nm CMOS, while SpiN-
Naker2 was realised on 22 nm fully depleted silicon on
insulator (FDSOI) CMOS,47 which allowed not only to
increase the performance of a single chip as a whole, but
also to improve power efficiency. It is stated that SpiN-
Naker2 enabling a 10× increase in neural simulation ca-
pacity per watt over SpiNNaker1. Among the potential
applications for the SpiNNaker2 the following stand out:
naturally, brain research and whole-brain modeling, bi-
ological neural simulations with complex plasticity rules
(with spike-timing-dependent plasticity (STDP), for ex-
ample), low-power inferencing for robotics and embedded
artificial intelligence (AI), large-scale execution of hybrid
AI models, autonomous vehicles, and other real-time ma-
chine learning applications.

Neurogrid

The Neurogrid project, carried out at Stanford University
in December 2013,48 is a mixed analogue-digital neuro-
morphic system based on a 180 nm CMOS process. The
project has two main components: software for interac-
tive visualisation and hardware for real-time simulation.
The main application of Neurogrid is the real-time sim-
ulation of large-scale neural models to realise the func-
tion of biological neural systems by emulating their struc-
ture.35

The hardware part of Neurogrid contains 16 Neuro-
cores connected in a binary tree: microelectronic chips
with a 12× 14 mm2 die containing 23 million transistors
and 180 pads; a Cypress Semiconductor EZ-USB FX2LP
chip that handles USB communication with the host; a
Lattice ispMACH CPLD. This makes it possible to estab-
lish a link between the data transmitted via USB and the
data driven by Neurogrid, and to interleave timestamps
with the outgoing data (host binding). A daughter board
is responsible for primary axonal branching and is imple-
mented using a field-programmable gate array (FPGA).
The Neurogrid board is shown in figure 10c. Each Neu-
rocore implements a 256 × 256 silicon neuron array, and
also contains a transmitter, a receiver, a router, and two
RAMs. A neuron has one soma, one dendrite, four gating
variables and four synapse populations for shared synap-
tic and dendritic circuits.35

The Neurogrid’s architecture enables to simulate cor-
tical models emulating axonal arbors and dendritic trees:
a cortical area is modeled by a group of Neurocores men-
tioned above and an off-chip random-access memory is

programmed to replicate the neocortex’s function-specific
intercolumn connectivity.49 Therefore, it is indeed simu-
late the behaviour of large neural structures, including
conductance-based synapses, active membrane conduc-
tances, multiple dendritic compartments, spike backprop-
agation, and cortical cell types. No data is available on
the power consumption of image recognition, as in the
case of TrueNorth or SpiNNaker, but that’s understand-
able: the main purpose of the project is to model the neu-
ral activity of living tissues, and that’s what it does. One
thing we can say for sure is that the neurogrid consumes
less power than the GPU for the same simulation: 120 pJ
versus 210 nJ per synaptic activation.50 This confirms the
thesis that digital simulation (on CPUs or GPUs), even
though it allows solving such problems, but the time and
power consumption will be significant compared to spe-
cialised architectures.

NorthPole

A striking example of a hardware implementation of a
semiconductor bio-inspired neural network is the recently
(2023) introduced NorthPole chip from IBM51 (figure 10b).
NorthPole is an extension of TrueNorth, and it’s not sur-
prising that it inherits some of the technology used there.
The NorthPole architecture is designed for low-precision,
common-sense computing while achieving state-of-the-art
inference accuracy for neural networks. It is optimised for
8-, 4- and 2-bit precision, eliminating the need for high
precision during training. The NorthPole system con-
sists of a distributed modular array of cores, with each
core capable of massive parallelism, performing 8192 2-
bit operations per cycle. Memory is distributed between
and within the cores, placing it in close proximity to the
computation. This proximity allows each core to take
advantage of data locality, resulting in improved energy
efficiency. NorthPole also incorporates a large on-chip
memory area that is neither centralised nor hierarchically
organised, further enhancing its efficiency.

Potentially, the NorthPole chip opens up new ways for
the development of intelligent data processing for tasks
such as optimisation (of systems, algorithms, scalabil-
ity, etc.), for image processing for digital machine vision,
and data recognition for autopilots, medical applications,
etc. Also the chip was run in such well-known tests as
ResNet-50 image recognition and YOLOv4 object detec-
tion models, where it showed outstanding results: higher
energy and space efficiency, and lower latency than any
other chip available on the market today, and is roughly
4000 times faster than TrueNorth (since the requirements
to the accuracy of calculations in the chip are reduced,
it is not possible to correctly estimate the specific per-
formance). Ref.51 provides the following data: North-
Pole based on 12 nm node processing technology deliv-
ers 5 times more frames per joule than GPU NVIDIA
H100 based on 4 nm technological process (571 vs. 116
frames/J) and 1.5 times more than the specialised for neu-
ral network use Qualcomm Cloud AI 100 based on 7 nm
technological process. The reason for this is the local-
ity of the computation – by eliminating off-chip memory
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Figure 10. Images of some CMOS spiking neural network real-
isations: a – IBM TrueNorth chip,34 b – IBM NorthPole chip,51

c – Neurogrid board,48 d – SpiNNaker (spiking neural network
architecture), a massively parallel, manycore supercomputer archi-
tecture.46

and intertwining on-chip memory with compute memory,
the locality of spatial computation is ensured and, as a
result, energy efficiency is increased. Also low-precision
operations further increase NorthPole’s lead over its com-
petitors.

Modha et al. [51] tested NorthPole only for use in
computer vision. However, with this sort of potential, this
chip can also be used for image segmentation and video
classification. According to the information on the IBM’s
blog it was also tested in other areas, such as natural
language processing (on the encoder-only BERT model)
and speech recognition (on the DeepSpeech2 model).

Loihi and Loihi2

In 2018, Intel Labs unveiled the first neuromorphic many-
core processor that enables on-chip learning and aims
to model spiking neural networks in silicon. The name
of this processor is Loihi (figure 11a). Technologically,
Loihi is a 60mm2 chip manufactured in Intel’s FinFET
14 nm process. The chip instantiates a total of 2.07 billion
transistors and 33 MB of static random access memory
(SRAM) across its 128 neuromorphic cores and three x86
cores to manage the neuro cores and control spike traffic
in and out of the chip. It supports asynchronous spiking
neural network models for up to 130000 synthetic com-
partmental neurons and 130 million synapses. Loihi’s ar-
chitecture is designed to enable the mapping of deep con-
volutional networks optimised for vision and audio recog-
nition tasks. Loihi was the first of its kind to feature on-
chip learning via a microcode-based learning rule engine
within each neural core, with fully programmable learn-
ing rules based on spike timing. Intel’s chip allows the
SNN to incorporate: 1) stochastic noise, 2) configurable
and adaptable synaptic, axonal and refractory delays, 3)
configurable dendritic tree processing, 4) neuron thresh-

Figure 11. a, b – Loihi chip plot (a) and Intel’s the second-
generation neuromorphic research chip Loihi 2 (b) (pictures from
the Intel’s official website from the News about ”Intel Advances
Neuromorphic with Loihi 2, New Lava Software Framework and
New Partners”).

old adaptation to support intrinsic excitability homeosta-
sis, and 5) scaling and saturation of synaptic weights to
support “permanence” levels beyond the range of weights
used during inference.52,53

The on-chip learning is organised in such a way that
the minimum of the loss function over a set of training
samples is achieved during the training process. Also,
learning rules satisfies the locality constraint: each weight
can only be accessed and modified by the destination
neuron, and the rule can only use locally available in-
formation, such as the spike trains from the pre-synaptic
(source) and post-synaptic (destination) neurons. Loihi
was the first fully integrated digital SNN chip that sup-
ported diverse local information for programmable synap-
tic learning process such as: 1) spike traces corresponding
to filtered presynaptic and postsynaptic spike trains with
configurable time constants, 2) multiple spike traces for
a given spike train filtered with different time constants,
3) two additional state variables per synapse, besides the
normal weight, to provide more flexibility for learning
and 4) reward traces that correspond to special reward
spikes carrying signed impulse values to represent reward
or punishment signals for reinforcement learning.52

In Intel Labs original work the performance of Loihi
was checked on theleast absolute shrinkage and selec-
tion operator (LASSO) task (l1-minimising sparse coding
problem). The goal of this task is to determine the sparse
set of coefficients that best represents a given input signal
as a linear combination of features from a feature dictio-
nary.52 This task was solved on a 52 × 52 image with a
dictionary of 224 atoms and during that the Loihi allowed
to provide 18 times compression of synaptic resources for
this network. The sparse coding problem was solved to
within 1% of the optimal solution. Unfortunately, the ar-
ticle does not provide data on energy efficiency and speed
of the chip when solving this problem. A bit later in53

the classical classification task on modified NIST dataset
was solved with accuracy of 96.4%.

In 2021 Intel Labs introduced their second-generation
neuromorphic research chip Loihi 2 (figure 11b), as well as
the open-source software framework LAVA for developing
neuro-inspired applications. Based on the Loihi experi-
ence, Loihi 2 supports new classes of neuro-inspired algo-
rithms and applications, while providing up to 10 times
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faster processing, up to 15 times greater resource density
with up to 1 million neurons per chip, and improved en-
ergy efficiency.54 Loihi 2 has the same base architecture
as its predecessor Loihi, but with new functionality and
improvements. For example, the new chip supports fully
programmable neuron models with graded spikes (Loihi
supported only generalised LIF neuron model with binary
spikes, whereas Loihi 2 supports any models) and achieves
a 2× higher synaptic density. Ref. [56] reports a compar-
ison of the performance and energy efficiency of the Loihi
2 chip compared to the performance of the the NVIDIA
Jetson Orin Nano on video and audio processing task.
Computing neuromorphic systems based on the Loihi 2
provide significant gains in energy efficiency, latency, and
even throughput for intelligent signal processing appli-
cations (such as navigation and autopilot systems, voice
recognition systems) compared to conventional architec-
tures. For example, the Loihi 2 implementation of the In-
tel NSSDNet (Nonlocal Spectral Similarity-induced De-
composition Network) increases its power advantage to
74× compared to NsNet2 (Noise Suppression Net 2) run-
ning on the Jetson Orin Nano platform. The Loihi 2 has
also demonstrated their advantages in Locally Compet-
itive Algorithm implementation.55 Loihi 2 is also capa-
ble of reproducing bio-realistic neural network implemen-
tation and it is flexible in terms of supporting different
neuron models. Ref. [57] demonstrates a showcase of im-
plementing a simplified bio-realistic basal ganglia neural
network that carries “Go/No-Go” task, by using Izhike-
vich neurons.

3.3 Memristor-based realisations

A memristor is the fourth passive element of electrical
circuits. This element is a two-terminal device, the main
property of which is the ability to memorise its state de-
pending on the applied bias current. Theoretically pro-
posed58 by Leon Chua in 1971, the memristor has seen
the daylight as a prototype (memory + resistor) based
on a thin film of titanium dioxide in 2008 thanks to HP
Labs company.59 The reason for the development of this
device in the first place was the following problem: to
further improve the efficiency of computing, electronic
devices must be scalable to reduce manufacturing costs,
increase speed and reduce power consumption – that is,
more and more transistors must be placed on the same
area of the crystal each time. However, due to physical
limitations and rising manufacturing costs when moving
to new process standards (to a 10 nm process, for exam-
ple), the processing nodes of a traditional CMOS tran-
sistor can no longer scale cost-effectively and sustainably.
As a result, new electronic devices with higher perfor-
mance and energy efficiency have become necessary to
satisfy the needs of the ever-growing information tech-
nology market,60 implementing new “non-von Neumann”
paradigms of in-memory computation.61,62

Initially, memristive systems acted as elements of
energy-efficient resistive random-access memory memory
(RRAM) by using two metastable states with high and
low resistance, switching between which is carried out by

Figure 12. Illustration of the artificial neuron based on a diffusive
memristor, consisting of a SiOxNy :Ag layer between two Pt elec-
trodes.64

applying an external voltage. However, in recent years,
the potential application of memristors can be used to re-
alise the functions of both synapses and neurons in both
ANNs and SNNs.63 Figure 12 shows one of the realisa-
tions of a memristor-based neuron. It exploits the dif-
fusion processes between two types of layers: dielectric
SiOxNy:Ag layer (doped with Ag nanoclusters) and Pt
layer.64 The SiOxNy:Ag material serves as the functional
part of the memristor, allowing the creation of a model of
the leaky integrate-and-fire neuron. The diffusive mem-
ristor integrates the presynaptic signals (arriving at one
of the Pt electrodes) within a time window and transi-
tions to a low resistance state only when a threshold is
reached.

Using nanotechnology capabilities, it is possible to
miniaturise memristive electronic devices to units of
nanometers, which allows achieving a high density of ele-
ments on a chip. An important advantage of memristors
is their compatibility with CMOS technology: memristors
can be organised fairly easily into a crossbar architecture
that takes advantage of parallel in-memory computing.
With nanoscale, two-terminal and semiconductor mem-
ristor, memristor crossbars are characterised by high ele-
ment density and better energy efficiency than their tran-
sistor counterparts. Due to this, this approach makes
it possible to implement memristive networks based on
2D- and 3D-integrated crossbar structures to increase the
speed of signal transmission.65–70 This is why memristor
crossbars are seen as a good candidate as a basis for neu-
romorphic networks.71

It is assumed that due to similar mechanisms of ion ex-
change in biological nerve cells and memristors, the last
ones can mimic synapses and even neurons with suffi-
ciently high accuracy. Since the capabilities of a neu-
ral network are usually determined by its size (number
of neurons and inter-neuron connections), a scalable and
energy-efficient component base is required to create a
more powerful and energy-efficient system.72,73 There
have been many works aimed at studying the properties
of memristors in terms of their application as synaptic el-
ements and neurons, and there have even been successes
in demonstrating the effect of synaptic plasticity74 and
the operation of the integrate-and-fire neural model.75

Also an artificial neuron based on the threshold switch-
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ing and fabricated on the basis of NbOx material, has
been demonstrated. Such a neuron displays four critical
features: threshold-driven spiking, spatiotemporal inte-
gration, dynamic logic and gain modulation.76

The dynamic characteristics of memristors in combi-
nation with their nonlinear resistance allow us to observe
the responses of the system to external stimulation.77 At
the same time, the stochastic properties of memristors
due to interaction with the external environment78 can be
used both for controlling metastable states and for hard-
ware design of SNN circuits.79 The first experimental
prototypes of SNNs based on memristors and CMOS have
already been created (synapses are realised via memristor
crossbars, and neurons - via semiconductor transistors)
and they can “to a certain extent” emulate spike-timing
dependent plasticity.80,81 However, they are based on a
simplified concept of synaptic plasticity based on overlap-
ping pre- and postsynaptic adhesions,81 which has led to
reduced energy efficiency and rather complex technologi-
cal design of SNN design circuits. Currently, approaches
to overcome these problems are being developed, for ex-
ample, on the basis of complete rejection of analogue-
digital and digital-analogue transformations and creation
of neuromorphic systems in which all signal processing
occurs in analogue form82 or by creating the concept of
self-learning memristor SNNs.

Unfortunately, to realise a fully-memristive neuromor-
phic neural network it is necessary to achieve a non-linear
dynamic signal processing. This challenge has so far not
overcome by memristors alone, and every memristive neu-
ral network proposal relies on the operation of classical
semiconductor transistors in one way or another. Below
we consider two interesting realisations of CMOS mem-
ristive neural networks.

Neuromorphic network based on diffusive memristors

In 2018 Wang et al. presented an artificial neural net-
work implemented on diffusive memristors (and also on
transistors) that is capable to solve pattern classification
task with unsupervised learning.64 Note that the network
demonstrated in the paper, recognised only four letters
(”U”, ”M”, ”A”, ”S”), presented as 4-by-4 pixel images.
Nevertheless, a working memristive network is a signif-
icant achievement and shows the feasibility in principle
of the idea of memristor-based neuromorphic hardware
computing. In figure 12 demonstrated the central part of
this network and artificial neuron in particular – diffusive
memristor consisted of a SiOxNy:Ag layer between two
Pt electrodes and serving as the neuron’s soma.

The most important difference between a diffusion
memristor and a traditional memristor is that once the
voltage is removed from the device terminals, it automat-
ically returns to its original high-resistance state. The
dynamics of the diffusion process in a diffusion memris-
tor has similar physical behaviour to biological Ca2+ dy-
namics, which can accurately mimic different temporal
synaptic and neuronal properties.72

The diffusive memristor in the artificial neuron is very
different from non-volatile drift memristors or phase-

Figure 13. a – Microphotograph of the fully memristive spiking
neural network, consisting of memristive synapse crossbar (in red
frame) and memristive neurons (in blue frame). b – SEM (scan-
ning electron microscopy) microphotograph of a single memristive
synapse. c – TEM (transmission electron microscopy) image of
the synapse cross-section with the structure of drift memristor,
Pd/HfOx/Ta. d – SEM microphotograph of a single memristive
neuron. e – TEM image of the neuron cross-section with the struc-
ture of diffusive memristors, Pt/Ag/SiOx: Ag/Ag/Pt. These im-
ages were adapted from Ref. [64].

change memory devices used as long-term resistive mem-
ory elements or synapses. The point is that the memris-
tor processes the incoming signals within a certain time
window (characteristic time, which in the diffusive mem-
ristor model is determined by the Ag diffusion dynamics
to dissolve the nanoparticle bridge and return the neuron
to its resting state) and then, only when a threshold has
been reached, transitions to a low-resistance state. Fig-
ure 13a shows an integrated chip of the memristive neural
network,64 consisting of a one-transistor–one-memristor
(figure 13b,c) synaptic 8-by-8 array and eight diffusive
memristor neurons (figure 13d,e). The synapses were cre-
ated by combining drift memristors with arrays of tran-
sistors. In this configuration, each memristor (i.e., the
Pd/HfO2/Ta structure) is connected to a series of n-type
enhancement-mode transistors. When all the transistors
are in an active state, the array functions as a fully con-
nected memristor crossbar.

The input images are divided into four 2-by-2 pixel
subsets, where each pixel is assigned a specific pair of volt-
ages (equal in modulus but different in sign), depending
on the colour and intensity of the pixel. Each resulting
subset is expanded into a single-column input vector com-
prising eight voltages. This input vector is then applied
to the network, which consists of eight rows, at each time
step. For each possible subset, there is a correspond-
ing convolution filter implemented using eight memristor
synapses per column. In total, there are eight filters in
an 8 × 8 array. The convolution of the eight filters for
each sub-image simultaneously results in the ”firing” of
the corresponding neurons, which fulfil the role of ReLU.
Eight outputs of these ”ReLUs” coupled with the 8-by-3
fully connected memristive crossbar, whose fan-out con-
centrates all spikes on the last layer of the neural network
consisting of 3 neurons ”firing” which corresponds to a
certain recognised image. It is claimed that the neuro-
morphic nature of the presented network is ensured due
to the realisation of the effect of STDP used in the learn-
ing process and reflected in the change in the resistance
of memristors in the crossbar when the next voltage pulse
is passed. Despite the insufficient (in our opinion) repre-
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Figure 14. a – The SEM top view image of the 20 memristive
crossbar-integrated synapses connected to a single leaky-integrate-
and-fire neuron (schematics is shown). b – The experimental setup
of the LIF neuron implementation.80 These images were adapted
from Ref. [80].

sentativeness of the learning results, the network archi-
tecture and the physics behind the used devices do not
allow us to doubt the presence of the STDP effect, con-
sidering that similar effects were observed in memristors
back in 2015.83

STDP learning in partially memristive SNN

The next realisation of the memristive-based neural net-
work is proposed by Prezioso et al. [80], who experi-
mentally demonstrated operation and STDP learning in
SNN, implemented with the passively integrated (0T1R)
memristive synapses connected to a silicon LIF neuron.
The experimental setup consisted of 20 input neurons
connected via 20 memristive crossbar-integrated synapses
to a single LIF neuron. The input neurons – one neu-
ron for each row of the memristive crossbar – are im-
plemented using the off-the-shelf digital-to-analogue con-
verter circuits. Synapses are implemented by Pt/Al2O3/
TiO2−x/Pt based memristors in a 20 × 20 crossbar ar-
ray. In this SNN implementation there is only a single
LIF output neuron that connected to the third array col-
umn, while the other columns are grounded. LIF neu-
ron is also realised on the custom-printed circuit board
(see figure 14). This arrangement allows connecting the
crossbar lines either to the input/output neurons during
network operation or to a switch matrix, which in turn is
connected to the parameter analyser, for device forming,
testing, and conductance tuning. Once the threshold is
reached, the LIF neuron fires an arbitrary waveform gen-
erator. The characteristic duration of voltage spikes is on
the order of 5ms.

The neural network was trained to solve the coinci-
dence detection problem (the task of identifying corre-
lated spiking activity) using the STDP learning mech-
anism, which allows training a single neuron to produce

an output pulse when it receives simultaneous (i.e., corre-
lated) pulses from multiple input neurons. The relevance
of such a task is due to the fact that the coincidence de-
tection mechanism is an integral part of various parts of
the nervous system, such as the auditory and visual cor-
tex, and is generally believed to play a very important
role in brain function.84–86

The conducted experiment has confirmed one of the
main challenges for SNN implementation with memris-
tors – their device-to-device variations. This imposes its
own limitations on STDP learning, where it is important
to consider certain time intervals (windows). Ideally, all
synapses should be identical, and conductance updates
for them should occur in equal STDP windows. In re-
ality, however, conductance updates differ significantly
between different memristive synapses, precisely because
of differences in device switching thresholds. SNNs usu-
ally operate with spikes of the same magnitude, which
allows to realise parallel updating of weights in several
devices in crossbar circuit designs. In this experiment,
the magnitude of the spikes was chosen based on the av-
erage switching threshold of the devices. Therefore, the
change of conductivity in devices with a larger switching
threshold was naturally smaller.

So, CMOS models provides great integration capabil-
ities, while at the same time requiring high power supply
and a large number of auxiliary elements to achieve bio-
realism. Also for this technology it is still difficult to
achieve high parallelism in the system due to significant
interconnect losses. Meanwhile, important applications
based on semiconductor neuromorphic chips are already
being solved, and within the framework of the “Human
Brain Project”, the second generation of the spiking neu-
ral network architecture SpiNNaker has even been cre-
ated. Creating and advancing higher performance and
energy efficient semiconductor chips is a very important
issue. There are broad areas where these devices may be
in high demand, primarily because of the possibility of
mobile deployment from smart bioprostheses and brain-
computer interfaces to “thinking” robot-androids.

Memristors can achieve bio-realism with fewer com-
ponents (the ionic nature of their functioning is similar
to that in neurons), but the technology of their manu-
facturing has not yet been refined and the problem of
device-to-device variations has not been solved. There-
fore, at the moment, we should assume that memristors
will be an auxiliary tool for semiconductor technology. It
is not realistic to create a fully memristive neuromorphic
processor separately, but maybe it is not necessary?

At the device level, the energy required for compu-
tation and weight updates is minimal, as everything is
rooted in the presence or absence of voltage spike. At
the architecture level, computation is performed directly
at the point of information storage (neuromorphism and
rejection of von Neumann architecture), avoiding data
movement as is the case in traditional digital comput-
ers. In addition, potentially memristor networks have
the ability to directly process analogue information from
various external sensors and sensing devices, which will
further reduce processing time and power consumption.
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The superconductor element base used to build neuro-
morphic systems, discussed below, has the same capa-
bility. Experimental implementation of large memristor
neural networks used for working with real data sets is at
an early stage of development compared to CMOS ana-
logues.72 And the device-to-device variation in memris-
tors’ switching thresholds is still the major challenge.

4 Superconductor-based bio-inspired elements
of neural networks

Superconducting digital circuits are also an attractive
candidate for creating large-scale neuromorphic comput-
ing systems.87–89 Their niche is in tasks that require both
high performance and energy-efficient computing. Mod-
ern superconducting technologies make it possible to per-
form logical operations at high frequencies, up to 50GHz,
with energy consumption in the order of 10−19 − 10−20 J
per operation.87,90–94 Superconducting devices95 lend
themselves to the creation of highly distributed networks
that offer greater parallelism than the conventional ap-
proaches mentioned above. For example, in a crossbar-
based synaptic network, the resistive interconnection leads
to performance degradation and self-heating. In contrast,
the zero-dissipation superconducting interconnection at
cryogenic temperatures provides a way to limit intercon-
nection losses.

The main problem with superconductor-based tech-
nologies is their relatively low scalability. Recently, the
size of superconducting logic elements, the main part
of which is the Josephson junction (JJ),96,97 is about
0.2µm2 (approximately 107 JJs per cm2).98–100 This
value is comparable to the size of a transistor at 28 nm
process technology in 2020. At the same time, super-
conducting hardware has a competitive advantage over
CMOS technology due to its ability to exploit the third
dimension in chip manufacturing processes. Incorporat-
ing vertically stacked Josephson inductors fabricated with
self-shunted Josephson junctions in single-flux-quantum
(SFQ) based circuits would increase circuit density with
minimal impact on circuit margins.101 In addition, the
operating principles of Josephson digital circuits, which
manipulate magnetic flux quanta with associated picosec-
ond voltage pulses, are very close to the ideas of spiking
neural networks.

Further development of the superconducting imple-
mentation of neuromorphic systems thus offers the pros-
pect of creating a neuronet that emulates the functioning
of the brain with ultra-high performance, and at the same
time the neurons themselves prove to be relatively com-
pact, since it is enough to use only a few heterostructures
for the proper functioning of the cell.

The design of neurons and synapses using Josephson
junctions and superconducting nanowires is discussed in
the following subsections.

4.1 Implementations based on Josephson junctions

This approach is based on the quantisation of magnetic
flux in superconducting circuits. Moreover, the flux quan-

tum102–104 can only enter and exit through a weak link in
the superconductor: the Josephson junction, an analogue
of an ion-permeable pore in the membrane of a biological
neuron. This fact is important because studies of neural
systems focus mainly on studying and reproducing the
behaviour of neurons, including complex patterns of neu-
ronal activity, their ”firings”. Just as biological neurons
have a threshold voltage above which an action potential
is generated, a Josephson junction has a threshold cur-
rent, the Josephson junction critical current, Ic. When
the current through the junction exceeds this value, a
voltage spike-like pulse is generated.

One of the most common ways to describe Josephson
junctions is the resistively shunted junction model, where
the junction can be replaced with an equivalent circuit of
three parallel elements: a Josephson junction, a resistor
and a capacitor.93 The current through the Josephson
junction can be written as the sum of three currents:

IS + IN + ID = I, (6)

where IS is the supercurrent governed by the Josephson
phase φ of the JJ (the current phase relation is an impor-
tant property of the heterostructure), IN is the normal
component of the current, for which Ohm’s law can be ap-
plied, and ID is the capacitive component of the current.
Based on the Josephson relations for current components,
we obtain a second-order differential equation describing
the phase dynamics of the Josephson junction:

ℏC
2e

φ̈+
ℏ

2eR
φ̇+ Ic sinφ = I, (7)

where C and R are the capacitance and the normal-state
resistance of the Josephson junction.

This equation is identical to that of a forced damped
pendulum, where the first term gives the torque due to a
“gravitational” potential, the second term is the damp-
ing term and the third term is the kinetic energy with
a mass promotional to C. The sum of all three terms is
the external torque corresponding to the applied current.
When a small torque below the critical value is applied,
the phase φ will increase and reach a static value. As the
phase gets close to π, there will be a probability that the
pendulum will go over the potential energy maximum, re-
sulting in the emission of a SFQ-pulse. When the applied
current exceeds the critical current, the torque is enough
to continually drive the pendulum over the potential en-
ergy maximum generating a series of SFQ-pulses.

The Josephson junction soma (figure 15a), or JJ soma,
proposed by Crotty et al. [105], is a circuit of two Joseph-
son junctions connected in a loop which displays very
similar dynamics to the HH model. The two junctions
behave phenomenologically like the sodium and potas-
sium channels, one allowing magnetic flux to charge up
the loop and the other allowing flux to discharge from the
loop. The circuit exhibits many features of biologically
realistic neurons, including the evocation of action poten-
tials “firing” in response to input stimuli, input strength
thresholds below which no action potential is evoked, and
refractory periods after “firing” during which it is difficult
to initiate another action potential.
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Figure 15. a – A sketch explaining the concept of the Josephson
neuron: a superconducting circuit plays the role of a membrane
impermeable to magnetic flux quanta; weak points of Josephson
junctions allow quanta to enter (and exit) the circuit. b – By re-
placing one of the junctions with an asymmetric superconducting
quantum interferometer device (SQUID) one enables control of the
ratio between the “widths” of the input and output channels. The
image in the panel b was adapted from Ref. [106].

Refs. [106–108] discuss an improved version of such a
soma, where the input “pore” is represented as an asym-
metric interferometer (figure 15b). The main advantage
of the 3JJ neuron is that its mode of operation is eas-
ier to control. It has been shown that the 3JJ neuron
has a much wider range of parameters in which switch-
ing between all operating modes (bursting, regular, dead,
injury) is possible simply by controlling the bias current.
Furthermore, the 3JJ neuron can be made controllable
using identical Josephson junctions, and this design tol-
erates larger variations in the physical parameters of the
circuit elements.

Each element of the nervous system can be repre-
sented by a similar behavior element of classical rapid-
SFQ (RSFQ) logic. Complete architecture and compari-
son with the biological archetype are shown in figure 16.
This circuit is driven by clocking regime in order to main-
tain stability when unforeseen side effects occur. One of
the most compelling capabilities of superconducting elec-
tronics is its ability to support very high clock rates.

1. Soma – Josephson Comparator (JC)
This is a clocked decision element that decides to
let a single flux quantum pass in response to a cur-
rent driven into source 1 in figure 16. The decision
function of the comparator is similar to the acti-
vation of a neuron in response to a current stimu-
lus. Note that the Josephson comparator has been
widely used as a nonlinear element in superconduct-
ing spiking neural networks.110,111

2. Axon – Josephson Transmission Line (JTL)
The transmission of the action potential originating
from the Soma to adjacent neurons can be carried
out by the Josephson Transmission Line (JTL). A
magnetic flux quantum can move along the JTL
with a short delay and low energy dissipation, and

Figure 16. Schematic representation of the complete RSFQ-based
architecture, along with a comparison of each of its components to
the biological prototype. Here the JTLs act as axons, the Joseph-
son junction in the centre as soma. This image was adapted from
Ref. [109] and then recomposed by authors.

its passage through the Josephson junction is ac-
companied by the appearance of a spike voltage
pulse on the heterostructures. This mechanism can
be likened to the process observed in biological sys-
tems, where the myelin sheath covering axons en-
ables the action potential to “hop” from one point
to the next.

3. Synapse – Adaptive Josephson Transmission Line
(AJTL)
Synapses exert an inhibitory or excitatory influ-
ence on the postsynaptic neuron with respect to
the past activity of the pre- and post-synaptic neu-
ron. While memory is still difficult to implement in
RSFQ technology, Feldhoff et al.109 have designed
a short-term adaptation element that sets a connec-
tion weight depending on the steady state activity
of the pre- and post-synaptic neuron. A common
design element in RSFQ circuits is a release junction
to prevent congestion. A release junction is inserted
into a JTL, making it controllable by two currents.
As a result, the release probability of an RSFQ
from the JTL-based superconducting quantum in-
terference device (SQUID) can be controlled by the
current flowing through the junction. By driving
the pulse sequence of the pre- and post-synaptic
neuron through an L-R low-pass filter, the current
through the JJ output is a function of the pulse fre-
quency and thus of the activity level of both neu-
rons. Thermal noise adds uncertainty to the junc-
tion switching and flux release from the supercon-
ducting loop. This creates a continuous dependence
of the SFQ transmission probability on the junction
current balance. Recently Feldhoff et al. [112] have
presented an improved version of the synapse where
the single junction is replaced by a two junction
SQUID, called a release SQUID. This allows the
critical current to be controlled by coupling an ex-
ternal magnetic field into the release circuit. Since
the flux can be stored in another SQUID loop, the
critical current can be permanently adjusted, which
changes the transmission probability of SFQs pass-
ing through the synapse. This makes the synap-
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Figure 17. Schematics of an advanced neuron proposed by Kara-
muftuoglu et al. [114] (right) and its input data branch structure
that enables the high-fan-in feature (left). This image was adapted
from Ref. [114] and then redrawn by authors.

tic connection more transparent to the connected
neurons. The realization of tunable synaptic inter-
connections is also possible by utilizing adjustable
kinetic inductance.113

To enable parallel processing in a network, it is nec-
essary to have sufficient capabilities for both input (fan-
in) and output (fan-out) in the technology platform. To
address the issue of limited fan-in in JJ-based neuron de-
signs, Karamuftuoglu et al. [114] introduced a high-fan-
in superconducting neuron. The neuron design includes
multiple branches representing dendrites, with each branch
placed between two JJs that set the threshold of the neu-
ron (see figure 17). This configuration allows for both
positive and negative inductive coupling in each input
data branch, supporting both excitatory and inhibitory
synaptic data. The resistors on each branch create leaky
behaviour in the neuron. A three hidden layer SNN using
this neuron design achieved an accuracy of 97.07% on the
modified NIST dataset. The network had a throughput
of 8.92GHz and consumed only 1.5 nJ per inference, in-
cluding the energy required to cool the network to 4K.115

Since memory storage is difficult to implement in
RSFQ technology, magnetic Josephson junctions can be
used to implement memory of past activity of pre- and
post-synaptic neurons. In these devices, the wavefunction
of Cooper pair extends into the ferromagnetic layer with
a damped oscillatory behavior. Leveraging the physics of
the interacting order parameters, Schneider et al. devel-
oped a new kind of synapse that utilizes a magnetic doped
Josephson junction.116 Inserting magnetic nanoparticles
into the insulating barrier between two superconductors
allows for the adjustment of the Josephson junction’s
critical current. Since numerous particles can be placed
within the same barrier, each aligned in various direc-
tions, the critical current can effectively vary across a con-
tinuous range of values, making magnetic Josephson junc-
tions an ideal memory element for the synaptic strength.

The memristive Josephson junctions (MRJJ) can also
serve as a neuron-inspired device for neuromorphic com-
puting. The paper by Wu et al.117 investigates the dy-
namic properties of neuron-like spiking, excitability and
bursting in the memristive Josephson junction and its

Figure 18. a – Equivalent circuit of a memristive Josephson junc-
tion (MRJJ) with, in order, capacitor, Josephson nonlinear device,
memristor. b – A memristive Josephson junction connected in par-
allel with an inductor (schematic with internal resistor, L-MRJJ)
is able to mimic neuron-like bursting behaviour. This image was
adapted from Ref. [117] and then redrawn by authors.

improved version (the inductive memristive Josephson
junction, L-MRJJ). Equivalent circuits of MRJJ and L-
MRJJ are shown in figures 18a and 18b respectively. The
MRJJ model is able to reproduce the spiking dynamics of
the FitzHugh-Nagumo neuron (FHN model). Unlike the
FHN model, the MRJJ model is bistable. The two class
excitabilities (class I and class II) in the Morris-Lecar
neuron are reproduced by the MRJJ model based on the
frequency-current curve. The L-MRJJ oscillator exhibits
bursting modes analogous to the neuronal busting of the
3-D Hindmarsh-Rose (HR) model in terms of purely dy-
namical behaviour, but there is a discrepancy between
the two models. The generating origin of the bursting
patterns depends on the saddle-node and homoclinic bi-
furcation using a fast-slow decomposition method. The
L-MRJJ model has infinite equilibria. The coupled L-
MRJJ oscillators can achieve both in-phase and antiphase
burst synchronisation, similar to the behaviour of coupled
Hindmarsh-Rose neurons. During burst synchronisation,
the L-MRJJ network is partially synchronised, but the
HR network is fully synchronised.

Adjusting neuron threshold values in spiking neural
networks is important for optimizing network performance
and accuracy, as this adjustment allows for fine-tuning
the network’s behavior to specific input patterns. Ucpinar
et al. [115] proposed a novel on-chip trainable neuron de-
sign, where the threshold values of the neurons can be
adjusted individually for specific applications or during
training.

4.2 BrainFreeze

Combining digital and analogue concepts in mixed-signal
spiking neuromorphic architectures offers the advantages
of both types of circuits while mitigating some of their
disadvantages. Tschirhart et al. [118] proposed a novel
mixed-signal neuromorphic design based on superconduct-
ing electronics (SCE) – BrainFreeze. This novel architec-
ture integrates bio-inspired analogue neural circuits with
established digital technology to enable scalability and
programmability not achievable in other superconduct-
ing approaches.

The digital components in BrainFreeze support time-
multiplexing, programmable synapse weights and pro-
grammable neuron connections, enhancing the effective-
ness of the hardware. The architecture’s time-multiplexing
capability enables multiple neurons within the simulated
network to sequentially utilize some of the same physical
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Figure 19. A high-level block diagram of the Neuron Core as part
of the BrainFreeze concept. This image was adapted from Ref. [118]
and then redrawn by authors.

components, such as the pipelined digital accumulator,
thereby enhancing the hardware’s effective density. Com-
munication among neurons within BrainFreeze is facili-
tated through a digital network, akin to those employed
in other large-scale neuromorphic frameworks. This digi-
tal network allows the sharing of wires connecting neuron
cores across multiple simulated neurons, eliminating the
necessity for dedicated physical wires to link each pair of
neurons and significantly improves scalability. The flexi-
ble connectivity offered by the digital network also allows
to implement various neural network structures by ad-
justing the routing tables within the network. By employ-
ing this approach, BrainFreeze leverages recent progress
in SCE digital logic and insights gleaned from large-scale
semiconductor neuromorphic architecture.

In its fundamental configuration, the BrainFreeze ar-
chitecture consists of seven primary elements: control
circuitry, a network interface, a spike buffer, a synapse
weight memory, an accumulator, a digital-to-analogue con-
verter, and at least one analogue soma circuit. A schematic
representation illustrating the overall architecture is pro-
vided in figure 19. The authors refer to one instance of
this architecture as a Neuron Core. This architectural
framework merges the scalability and programmability
features allowed by superconducting digital logic with the
biological suggestivity functionalities enabled by super-
conducting analogue circuits.

Tschirhart et al. [118] provided a comparison of state-
of-art neuromorphic architectures based on CMOS such
as TrueNorth, SpiNNaker, BrainScale, Neurogrid and
Loihi to BrainFreeze in order to demonstrate the po-
tential of the proposed architecture (see figure 20). In
conclusion, the findings indicate that employing a mixed-
signal SCE neuromorphic approach has the potential to
enhance performance in terms of speed, energy efficiency,
and model intricacy compared to the current state of the
art.

Figure 20. A comparison of state-of-art neuromorphic architec-
tures with the BrainFreeze results. a – The first comparison ex-
amines spike emission speed. b – The second comparison examines
the time and power efficiency of each architecture. c – The final
comparison evaluates the computational complexity of the neuron
models embedded in each architecture. In summary, BrainFreeze
shows promising potential to achieve significant improvements over
existing neuromorphic approaches. This image was adapted from
Ref. [118] and then redrawn by authors.

4.3 Superconducting nanowire-based and phase-slip-based
realisations

For a large neuromorphic network, the number of SFQ
pulses generated should be high enough to drive a large
fan-out. In this case, the JJ is limited in the number of
SFQ pulses it can generate. Therefore, it may be very
difficult to implement a complete neuromorphic network
based solely on the JJ. Schneider et al. [119] have the-
oretically reported a fan-out of 1 to 10000 and a fan-in
of 100 to 1. An approximate estimate of the power dissi-
pated for a 1-to-128 flux-based fan-out circuit for a given
critical current value is reported to be 44 aJ. Addition-
ally, the action potentials in JJ are not sufficiently strong
to be easily detectable. An alternative to JJ could be
a thin superconducting wire, also known as a supercon-
ducting nanowire (SNW). The intrinsic non-linearity ex-
hibited by superconducting nanowires positions them as
promising candidates for the hardware generation of spik-
ing behavior. When a bias current flowing through a su-
perconducting nanowire exceeds a threshold known as the
critical current, the superconductivity breaks down and
the nanowire becomes resistive, generating a voltage. The
nanowire switches back to the superconducting state only
when the bias current is reduced below the retrapping
current and the resistive part (the “hotspot”) cools down.
Placing the nanowire in parallel with a shunt resistor initi-
ates electrothermal feedback, resulting in relaxation oscil-
lations.120 SNWs demonstrate reliable switching from su-
perconducting to resistive states and have shown the ca-
pability to produce a higher number of SFQ pulses as out-
put. Toomey et al. [121, 122] have proposed a nanowire-
based neuron circuit that is topologically equivalent to
the JJ-based bio-inspired neurons discussed above.

Quantum phase slip can be described as the exactly
dual process to the Josephson effect based on charge-flux
duality (figure 21). In a quantum phase-slip junction
(QPSJ), a magnetic flux quantum tunnels across a super-
conducting nanowire along with Cooper pair transport
and generate a corresponding voltage across the junc-
tion.123,124 Unlike Josephson junctions and supercon-
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ducting nanowires, QPSJs do not require a constant cur-
rent bias. However, the “flux-tunneling” together with
voltage spike generation in such systems can be used to
implement neuropodic systems on a par with Josephson
junctions.

Cheng et al. [125] introduced a theoretical QPSJ-
based spiking neuron design in 2018 (figure 22). When
an input QPSJ fires, it charges a capacitor, building a
potential that eventually exceeds the threshold of the
output QPSJs connected in parallel. A resistor can be
added to maintain the same bias across all QPSJs. This
behaviour is consistent with the leaky integrate-and-fire
neuron model. The total “firing” energy for this circuit
design is given by the switching energy of the QPSJ mul-
tiplied by the number of QPSJs required for “firing”, and
is estimated to be on the order of 10−21 J, compared to
about 0.33 aJ (per switching event) for a typical JJ-based
neuron.

5 Bio-inspired elements for optical neuro-
morphic systems

Another alternative neuromorphic solution is networks
with physical realisation of spikes in the form of electro-
magnetic field packets. The advantage of such systems as
candidates for hardware implementation of optical neu-
ral networks (ONN) is also their speed of information
transmission, which can be carried out at frequencies ex-
ceeding 100GHz (even at room temperature!),126 as well
as the ability to create distributed networks with a high
degree of connectivity.127 High bandwidth is important
for practical applications such as those based on the con-
trol of hypersonic aircraft or related to the processing
of radio signals. The first ONN solutions are based on
silicon photonics, which is well compatible with CMOS
technology, for example based on Mach-Zender interfer-
ometers128 and micro-ring resonators.129

A common feature of optical computing systems is
the ability to perform linear operations efficiently,127,130

whereas nonlinear signal transformations, including spike-
based ones, pose a problem. As a result, these systems are
poorly suited for implementing non-linear computations
directly in the photonic domain. For this reason, hy-
brid solutions that combine the strengths of optical and

Figure 21. Illustration of the concept of charge-flux duality: a –
sketch of a JJ, consisting of an insulating tunnel barrier (yellow)
between a superconducting island (blue) and ”ground”; b – sketch
of a QPSJ, consisting of a superconducting nanowire between an
insulating island and ‘ground’. The inserts show the corresponding
electrical circuits and current-voltage characteristics.

Figure 22. A QPSJ-based integrate and fire neuron circuit with
integration capacitor and multiple parallel output QPS junctions.
This image was adapted from Ref. [125] and then redrawn by au-
thors.

electronic platforms are of interest. However, hybrid ar-
chitectures consisting of photonic synapses and electronic
spiking neurons require the use of high-speed photodetec-
tors and analogue-to-digital converters to translate the re-
sults of optical linear computations back into the digital
domain. This is complicated by high losses and packaging
costs due to the need for strict alignment between lasers
and waveguides.

Recently, approaches have been developed to imple-
ment photonic spiking neurons and to create fully opti-
cal spiking neural networks (OSNN) using nonlinear opti-
cal elements. Several implementations of leaky integrate-
and-fire neurons have been proposed based on vertical
cavity surface emitting lasers (VCSELs),131,132

distributed feedback lasers (DFB),133 phase change mate-
rials (PCM).134 For example, VCSELs have a wide range
of laser dynamics with distinct modes corresponding to
orthogonal and parallel polarisation. The excitation of a
sub-ns spike in this photonic neuron is based on the injec-
tion of an external signal and the conversion of electrical
impulses into optical ones, showing all the typical signs of
excitability of integrate-and-fire neuronal models. At the
same time, typical microwave modulation frequencies of
30-50GHz, combined with high efficiency, provide a suf-
ficiently low power consumption for nonlinear conversion
on the order of 10 fJ. By creating a photonic interconnect
structure (bandwidth and latency), the entire structure
can, after network training, perform calculations based on
an optical signal at the speed of light without additional
energy cost. This allows the dissipation in ONN using
VCSEL to be decreased down to 100 aJ per operation.
This looks promising from the point of view of energy ef-
ficiency.135 However, it should be noted that most optical
solutions require the use of coherent sources and detec-
tors, as well as additional pre- and post-processing, which
limits their scalability and compactness.

A detailed description of the operation of two common
types of OSNN devices, based on phase change materials
and semiconductor lasers, is given in the following sub-
sections.
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5.1 Phase change materials for elements in neural networks

Phase change materials (PCMs) are a special class of solid
state materials that undergo a reversible phase transition
from an amorphous to a crystalline state in response to
external stimuli. Such perturbations can be both electri-
cal and laser effects, which stimulate the release of heat in
the device and, as a result, a change in temperature, caus-
ing significant changes in the optical and electrical prop-
erties of the materials.136,137 One of the successful mate-
rials in photonic computing is the Ge-Sb-Te (GST) alloy,
which recently demonstrated nanosecond recording speed
using optical pulses.138 This development has led to the
creation of photonic memory devices,139 switches140 and
non-volatile computers.141 In addition, PCM has estab-
lished itself as a platform for neuromorphic bio-inspired
on-chip computing and has already demonstrated spike-
timing dependent plasticity142 and control of spiking neu-
rons143 in such systems.

Ref. [143] presented a bipolar integrate-and-fire spik-
ing neuron, including an integration unit (black dotted
block in figure 23a), consisting of two ring resonators
with integrated PCM based on Ge2Sb2Te5 and ”firing”
unit (orange dotted block in figure 23a). The dynamics
of a spiking neuron is determined by a change in the GST
phase state due to the absorption of light passing through
the waveguide.

This process causes an increase in the temperature of
the material and, consequently, an increase in the amor-
phisation of the material, that is, the GST state can be
defined as a function of the thickness of the amorphous
layer in the material from the amplitude of the input
pulse. The use of two ring resonators allows the neuron to
receive input signals of both polarities in order to process
both positive and negative weight values of w± synapses,
which is an important component in information process-
ing. In this case, the resulting amplitude of the pulse ar-
riving at the neuron, Σ, is equal to the difference between
the values of the positive and negative inputs. Thus, the
integration of the membrane potential is interconnected
with the amplitude of the resulting pulse arriving at the
neuron, which is represented by the integrating part of
the circuit in figure 23a in a black dotted frame. As soon
as GST reaches complete amorphisation, the membrane
potential crosses its threshold. The “firing” action of the
neuron is implemented by an additional photonic circuit
(see the part highlighted by the orange dotted frame in
figure 23a). This circuit consists of a photonic amplifier,
a circulator and a rectangular waveguide with a GST el-
ement in a crystalline state with low pulse transmission.
Based on the developed bipolar neuron circuit, the pos-
sibility of recording information at subnanosecond times
is shown.138,143 In addition, plasticity in weighing op-
erations of synapses144,145 were demonstrated on these
PCM systems. The simplest prototype of an optical SNN
was proposed, which demonstrated the scaling of indi-
vidual synapses into a large-scale synaptic matrix capa-
ble of performing parallelised point computations through
wavelength division multiplexing,146 modulating the res-
onant wavelength by changing the size of the waveguides.

Figure 23. a – Schematic of a bipolar integrate-and-fire neuron
based on GST ring resonator devices, where the right part in the
black frame is responsible for integration part, and the right part
in an orange dotted frame corresponds to the “firing” part. b –
Schematic representation of three PCM neurons, each connected
to four ring resonators (input) with different wavelengths (blue ar-
rows). The total signal then enters the PCM cells (large rings on
the right side of the figure), where the spike is generated. These
images were adapted from Ref. [134] and then redrawn by authors.

This allowed higher recording densities to be achieved
and circumvented some of the problems associated with
designing ring resonators whose size is comparable to the
operating wavelength range. Further, in the work,147 a
framework was proposed to demonstrate the operation
of the proposed photonic SNN platform based on ring
resonators with GST in solving image classification prob-
lems.

In 2019, the first experimental implementation of the
integrated photonic SNN134 was presented, consisting of
three presynaptic neurons, one output (postsynaptic) neu-
ron based on ring waveguides with GST and a six-network
integrated all-optical synapses with integrated wavelength
division multiplexing technology. An illustration of the
experimental scheme of a neuromorphic PCM cell is shown
in figure 23b. Ref. [134] has already tested the possibil-
ity of unsupervised network learning, for which a feed-
back waveguide was added to the circuit design, through
which part of the output neuronal pulse propagates back
through the synaptic elements in the PCM. This means
that the connections with all the inputs that contributed
to a particular jump in the output data are strengthened,
and the connections that did not contribute to the jump
are weakened. As a result, the optical SNN developed
was able to detect the simplest patterns.

5.2 Spiking networks with semiconductor lasers

Semiconductor lasers are solid-state devices whose oper-
ation is based on the properties of a semiconductor ma-
terial. The power, directivity and compactness of solid-
state lasers make them indispensable for high-intensity
tasks, while the adaptability and efficiency of semicon-
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Figure 24. a – Schematic diagram showing the basic working
principle of the experimentally investigated weighting of sub-ns op-
tical spikes produced by a VCSEL-neuron. b – An experimen-
tal scheme of a photonic spiking neuron based on the use of the
photodetector-resonant tunneling diode – VCSEL scheme, see more
details in Ref. [155], where TL – tunable laser, ISO – optical isola-
tor, PC – polarization controller, MZM – Mach-Zehnder modulator,
PM – optical power meter, CIRC – optical circulator, OSA – optical
spectrum analyzer, PD – photodetector, and RT OSC – real-time
oscilloscope. These images were adapted from Ref. [154] and then
redrawn by authors.

ductor lasers lend themselves to applications requiring
precision and stability. Fairly recently, another promis-
ing application of semiconductor lasers has appeared –
neuromorphic computing. It has already been possible
to observe the manifestation of bio-inspired properties of
such systems, such as excitability148,149 and demonstra-
tion of nonlinear dynamics,150,151 which became promis-
ing first steps towards the implementation and study of
optical spiking neurons based on semiconductor lasers.

Vertical-Cavity Surface-Emitting Lasers
(VCSEL)131,132 and Distributed Feedback Semiconduc-
tor Lasers (DFB-SL)133 are currently the main types of
devices for creating and studying optical spiking neu-
rons. The photonic elements under consideration con-
sist of three parts: a photodetector acting as an optical-
electrical converter, a receiver – a pulse converter of the
micrometer range that generates pulses in response to
incoming disturbances at the input, and VCSEL with a
wavelength of 1550 nm, acting as a converter of an elec-
trical signal into an optical one. A typical scheme for
implementing spiking neuron based on VCSEL is shown
in figure 24a. Obtaining controlled optical spikes when
exposed to exciting signals is based on the effects of po-
larisation switching, as well as synchronisation of phase
and amplitude modulated injection locking.152

Another way of implementing the spiking optical neu-
ron153 in laser systems is to use a resonant tunneling
diode: a semiconductor heterostructure with a double-
barrier quantum well.154 Due to the N-shaped I-V char-
acteristic of the diode and the effect of resonant quan-
tum tunneling, such devices have rich nonlinear dynam-
ics. The amplitude of optical pulses in synaptic connec-

tions can be controlled by adjusting the VCSEL bias cur-
rent. An artificial optoelectronic neuron based on an In-
GaAs resonant-tunneling diode connected to a VCSEL
has been proposed and experimentally implemented155

(see figure 24b), which allows the presynaptic weight of
the emitted optical pulses to be fully tuned at high speed.
The operation of the optical neuron is based on coher-
ent injection locking of the VCSEL with a signal from
an external tunable laser source (TL). The TL signal is
passed through an optical isolator (ISO) to provide unidi-
rectional communication between the lasers, and the TL
light intensity is modulated using a Mach–Zehnder modu-
lator (MZM). The polarization of the modulated signal is
consistent with the orthogonally polarized VCSEL mode
before it is fed into the device through an optical circula-
tor (CIRC). Another branch of this connector is used to
register power of the VCSEL-neuron using the photode-
tector (PD) and the real-time oscilloscope (RT OSC) from
the power meter (PM). The wavelength TL corresponds
to a peak in the laser spectrum. Switching between the
states (threshold and steady) is carried out by adjusting
the input power. The information is encoded in the sig-
nal intensity in such a way that the “stronger” stimuli
correspond to a greater decrease in injection power.

The threshold characteristics and refractory period
of neurons based on VCSELs156–159 have already been
studied. These properties naturally determine the max-
imum pulse response frequency and are key properties
for spike processing using rate coding, photonic polari-
sation dynamics and excitability of neurons,160 as well
as controlled distribution spike pulses.161,162 Further-
more, the simplest integrated photonic accelerator pro-
cessor based on VCSELs has been experimentally pro-
posed and the simplest implementation of the XOR163

classification problem has been demonstrated. It is shown
that the spike laser neuron performs coincidence detection
with nanosecond time resolution with a refractive period
of about 0.1 ns. In addition,165 proposed a physical model
for pattern recognition based on photonic STDP, which
is also based on VCSELs. However, the neurons on VC-
SELs require a continuous power supply to maintain the
behaviour of the neurons, so the advantages of energy
efficiency in such systems are negated. With regard to
DFB lasers, schemes have also been proposed for the im-
plementation of passive micro-ring optical spiking neu-
rons,164 where neuromorphic information processing is
performed, including image recognition based on STDP.
Note that an important difference from VCSEL in imple-
menting STDR on DFB-SL is the absence of wavelength
conversion and the use of optical filters.165,166

It should be noted that spiking of optical neurons on
other types of semiconductor lasers is currently being pro-
posed. For example, ring lasers have achieved multiple
spikes with a single perturbation,167 excitation responses
based on semiconductor lasers on quantum dots168,169

have been successfully modelled, threshold properties of
optically injected microdisk lasers170 have been studied,
and an integrated graphene-excited laser has been shown
to exhibit dynamics on the order of picosecond
timescales.171 However, these types of lasers are in the
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early stages of research for SNN compared to VCSEL and
DFB-SL.

6 Discussion and conclusion

The opportunities for neuromorphic computing technol-
ogy are immense, ranging from classical tasks such as
pattern recognition and video stream analysis to central
nervous system modelling and brain-computer interfaces.
Challenges for the SNN include: neuromorphic locomo-
tion control, neurorobotics, gait control, environmental
perception, adaptation; computational modelling of the
brain in the study of biological nervous systems (Human
Brain Project); dynamic recognition; prosthetics (visual
and auditory implants, treatment of Parkinson’s, dysto-
nia, schizophrenia, etc.), etc.

For the time being, not many laboratories in the world
are involved in these projects and tasks, as the main focus
is now on the development of narrowly focused software
models that solve a strictly defined problem. There is
not yet a demand from large international companies or
large private consumer sectors for the creation of versatile
neural network models, but this moment is approaching:
the problem of designing and training deep neural net-
works of large dimensionality is becoming more and more
obvious. Nowadays, almost all neural network models
are implemented in one way or another on the basis of
NVIDIA’s video chips, the annual production of which is
very limited, and there are even certain quotas for bulk
purchases. The energy required to train such networks
is also a significant problem. At the same time, there is
no guarantee that the neural network model is designed
correctly and that the training is carried out as required:
it may turn out that the accuracy of the neural network is
not high enough, or there may be an overtraining effect.

The advantages of the semiconductor element base for
hardware implementation of bio-inspired neural networks
are significant developments in the field of information in-
put/output devices, digital-to-analogue and analogue-to-
digital converters. Unfortunately, one of the main prob-
lems when trying to implement hardware parallelism of
large networks is the implementation of synaptic con-
nections. In two-dimensional parallel hardware, physi-
cal wiring only allows connections between adjacent neu-
rons, whereas biological neurons are distributed in three-
dimensional space and have many (thousands) connec-
tions between populations.

Memristive technologies can be instrumental in the
creation of large-scale networks with a large number of
synaptic connections.172 The memristive crossbars, which
are used as a kind of synaptic grid with both STDP and
STDD (Spike Timing Dependent Depression). The neu-
rons themselves are mostly implemented using transis-
tors. Attempts are being made to create a fully memris-
tive neural network, but it is still not possible to realise
without more conventional semiconductor devices.

The field of superconductivity has its own distinct suc-
cesses (high performance and energy efficiency) and prob-
lems (low integration density). Special attention should
be paid to hybrid interdisciplinary approaches:173–176 for

signal transmission, for light pulses transmitted from neu-
ron to neuron via optical waveguides on a chip, for infor-
mation processing and storage, and for superconducting
circuits, including single-photon detectors and supercon-
ducting digital logic cells. Superconducting technologies
make it possible to reduce the energy stored in pulses by
the electromagnetic field so that a signal containing only
a few photons can be used. To increase the compact-
ness and efficiency of the interaction with electromagnetic
radiation, current concentrating heterostructures (vari-
able thickness bridges or Dayem bridges) and multilayer
thin film heterostructures can be used instead of tradi-
tional superconductor-insulator-superconductor Joseph-
son junctions. Finally, superconducting implementations
are interesting because they allow close integration with
superconducting quantum bits.177 This offers the hope of
being able to experimentally test hypotheses about the
role of quantum effects in the functioning of conscious-
ness.

In the pursuit of bio-inspiration, performance, energy
efficiency, scalability and compactness, one should not fall
into the extremes of the capabilities of a single element
base – it is likely that some elements of a neural network
are much more convenient and efficient to implement in
a different way. In this review, we have tried to show not
only that the field of spiking neural networks with bio-
inspired properties is actively developing, but that it is
developing in different directions, like an octopus with its
tentacles finding the right solution, the direction of devel-
opment. In our view, all the areas discussed in this article
have their own strengths and weaknesses. At the moment,
however, it is difficult to say which of them will “take
off”. This is why hybrid approaches are so popular at
the moment, taking the advantages of their components
and compensating for their mutual disadvantages. In ad-
dition to hardware implementations and software SNNs,
biological neural networks based on biological organoids
and reservoir computing178–180 are on the way to creating
a biocomputer,181 but we have left this area outside the
scope of this review.
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D.-Y., Martinez A., Lemâıtre A., Ramdane A., Fischer
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